Advanced R: A Gentle Intro to Statistical Learning

Jared Berry

January 21, 2020

A word on data science and economics

The training you are all getting in econometrics and regression analysis makes you a tremendous asset to employers on the job market

- For those of you looking to explore work (or even unique research questions)
 outside the purely academic economics niche, knowledge of open-source tools
 (e.g. R, Python) and a handle on the basics of data science/statistical learning
 can open a lot of doors
- Most "data scientist" (or even analyst) roles will expect, and test, a level of expertise using R or Python along with knowledge of how to build and evaluate a predictive model

My goals

- Provide a rough foundation in statistical learning/predictive analysis using R
- Frame the rigorous training you all have in econometrics and regression analysis in a predictive, rather than inferential, context
- Walk-through examples of setting up models to perform predictions
- Learn methods for evaluating those predictions
- Explore, at a high-level, some statistical learning models outside the scope of traditional econometric training (OLS)
- Offer some degree of experience and comfort doing predictive analysis
 - What you will not be after this class: an expert on machine/statistical learning
 - What you will be after this class: comfortable enough to set up a rudimentary predictive model, explain why you picked it, and evaluate its performance

Today

- Statistical Learning
 - Estimating f
 - Prediction v. Inference
 - Prediction Accuracy v. Interpretability
 - Regression v. Classification
 - Assessing Model Accuracy and the Bias-Variance Tradeoff
- Linear Regression (OLS)
- Logistic Regression
- Cross-validation

Beyond

- Cross-validation (cont...)
- Other models
 - Lasso/Ridge
 - Decision Trees
 - Random Forest (More trees)
- Deliverable

Overall

We've branded this as "advanced R", largely due to the subject matter and importance of having a foundation in R, but this will skew more concept heavy than programming heavy

- Ideal: High-level conceptual understanding, coupled with practical application
- It does *not* take much code to run these (or really any) models typically just a couple of lines
- The rule of thumb is that 80% of a project is spent preparing (sourcing, ingesting, cleaning, etc.) data, and just 20% is spent modeling/visualizing

What is "statistical learning"

- At the simplest level, we want to use some function f(X) to predict an output variable Y using some set of input variables X.
 - i.e. is there some function that relates sales to advertising through different media
 - Terminology for these things differs
 - Inputs are sometimes called predictors, independent variables, features, variables, covariates etc.
 - Output is generally called dependent variable, response, target, etc.
- We typically represent this as:

$$y = f(X) + \varepsilon$$

- Where ε represents random error
- In statistical learning, econometrics, social science in general, etc. we are interested in estimating the function f
 - The regression equation you are all so intimately familiar with is the simplest way to do this!

Why would we want to do this

Prediction

- Predict \hat{Y} given some fitted function $\hat{f}(X)$ and predictors X (i.e. $\hat{Y} = \hat{f}(X)$ hats denote fitted/predicted values)
 - We want to maximize the accuracy of \hat{Y} as a prediction for Y
 - This depends on both reducible and irreducible error

$$E(Y - \hat{Y})^2 = E[f(X) + \varepsilon - \hat{f}(X)]^2$$

$$E(Y - \hat{Y})^2 = [f(X) - \hat{f}(X)]^2 + Var(\varepsilon)$$

- Where $E(Y-\hat{Y})^2$ represents the *expected value* of the squared difference between the predicted and actual value of Y, and $Var(\varepsilon)$ represents the *variance* associated with the error term e.
 - The first portion of the right side of this equation represents reducible error, while the second portion represents irreducible error
 - \bullet We're interested in finding/estimating f with to minimize the reducible error
 - Less concerned about standard errors in making predictions
 - Not quite "forecasting" which is more a pure time-series exercise

Why would we want to do this

Inference

- Rather than focusing on the accuracy of *predictions* of \hat{Y} , we might want to understand the *relationship* between X and Y, or understand how Y changes as a function of $X_1, ..., X_p$
 - This is the more traditional use case for the econometric work you are all learning, and necessitates correct standard errors (i.e. robust)
 - Questions like "Which predictors are associated with the response?" and "What
 is the relationship between the response and each predictor?"
 - Best answered using highly-interpretable (i.e. linear) models, which we will diverge from later on

How do we estimate f?

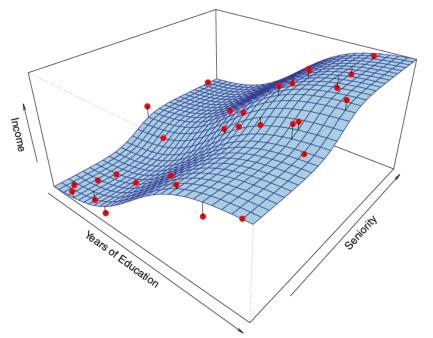
- Our goal is to apply some sort of estimation/statistical learning method to training data to estimate f, which is unknown.
 - We rarely get to know what function actually dictates the relationship we're estimating
 - Instead, use some estimated function \hat{f} where $Y \approx \hat{f}(X)$
- Parametric methods involve reducing the estimation of f to estimating a set of parameters, i.e. coefficients in a linear model

$$f(X) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p$$

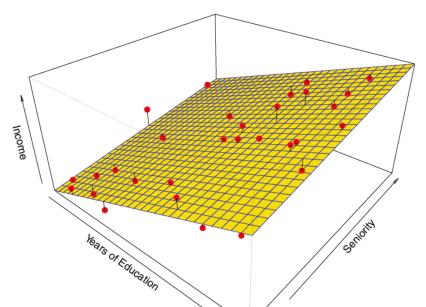
- Here, we would use our training data to *fit* or *train* the model, typically using ordinary least squares
- This approach generally oversimplifies reality (reality is probably *not* linear), but generally provides a good, *interpretable* approximation of \hat{f}

How do we estimate f?

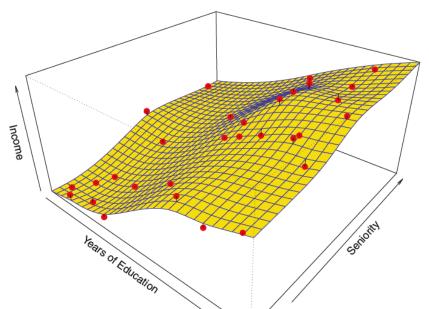
- Non-parametric methods make no assumption about the functional form of f
 and instead estimates an arbitrary function f that gets as close to the actual
 data points as possible
 - Far more flexible but requires a very large number of observations
 - Far *less* interpretable



Using a linear model (parametric)



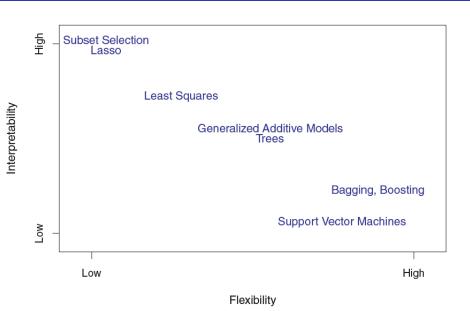
Using something non-parametric



Trade-offs

- Prediction accuracy (as a function of flexibility) vs. interpretability.
 - Linear models are easy to interpret; thin-plate splines (in the third image we will not talk about these) are not.
- Good fit vs. overfitting vs. underfitting.
 - How do we know when the fit is just right?
- Parsimony vs. black-box.
 - Simpler models involving fewer variables (sparse models) vs. black-box predictors involving everything.
 - Closely related to the interpretability trade-off

Flexibility vs. Interpretability



Flexibility vs. Interpretability

Regression vs. Classification

- Variables can be quantitative (numerical values) or qualitative (one of a number of categories, in other words, categorical)
 - We typically think of quantitative dependent variables as the subject of regression problems (ordinary least squares regression)
 - We typically think of qualitative dependent variables as the subject of classification problems (logit/probit models, or in this context, logistic regression)
 - We will look at some models that can do both

Measuring quality of fit (regression)

• In the regression setting, want to minimize mean squared error (MSE):

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{f}(x_i))^2$$

- i.e. what is the average squared difference between our function f's prediction for the ith observation, and the observed value y_i
 - We'll also look at RMSE (root mean squared error) which is the square root of this value (better maps to units on the y-axis)
 - MAE (mean absolute error) is a well-accepted metric as well (minimizes outliers)
 - These will be reiterated in time-series econometrics/forecasting

Measuring quality of fit (regression)

- We can compute these metrics (MSE, RMSE, MAE) on our training data, but what we're *really* interested in is how well we can fit *unseen test data*
 - If we trained a model/algorithm to predict stock prices using the past 6 months
 of returns, we'd want to know how well it could predict tomorrow's returns
 - How well our models perform on data we have through today is far less interesting than how well we can predict future/new outcomes
- We are also likely to bias our model by evaluating it's performance on the training data by overfitting
 - Chasing individual data points in the training data is bad if our data change

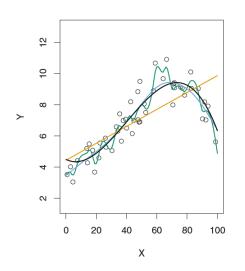
Measuring quality of fit (regression)

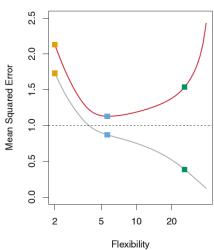
• We're really interested in minimizing *test* MSE. If (x_0, y_0) is an unseen test observation not used to train the model, we want a model that minimizes:

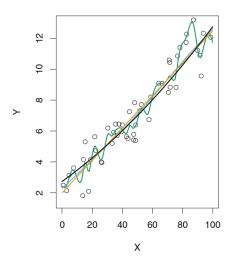
$$Ave(\hat{f}(x_0)-y_0)^2$$

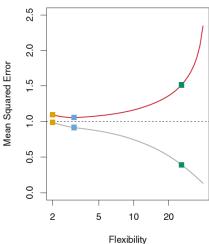
for all test observations

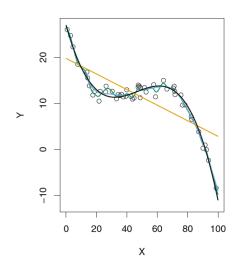
- In practice, getting test data is difficult (can't get tomorrow data today!)
 - We don't necessarily just want to pick the model with the lowest training MSE
 - What if our model fit on training data doesn't map well to test data?
 - We'll discuss a method for getting appropriate test data called cross validation
- This tension between training/test performance is captured in the *bias-variance* tradeoff

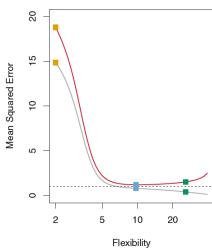












Test MSE can be decomposed into three parts, the *variance* of $\hat{f}(x_0)$, the *bias* of $\hat{f}(x_0)$, and the variance of the error term ε :

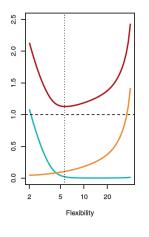
$$E(Y - \hat{Y})^2 = Var(\hat{f}(x_0)) + [Bias\hat{f}(x_0)]^2 + Var(\varepsilon)$$

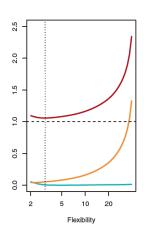
In simple terms...

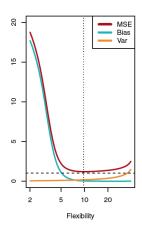
- Variance refers to the amount by which \hat{f} would change if we estimated the function using different training data
 - A method with high variance means that very small changes in training data significantly impact the method used to estimate it
- Bias refers to the error that is introduced by approximating a (potentially extremely complicated) real-life problem using a simple model
 - It's highly unlikely any *real world* problem can be truly approximated using a simple linear model

Typically as the *flexibility* of \hat{f} increases, its variance *increases*, and its bias *decreases*.

- The more complicated our model is, the better we'll be able to get at the complexity of the problem we're seeking to approximate
- The degree to which we chase individual data points to accomplish this, means that diverging from our test data can lead to disastrous performance
- Choosing the flexibility based on average test error amounts to a bias-variance trade-off







Measuring quality of fit (classification)

- All of the above applies, but how do we evaluate the performance of our models in a classification (qualitative) context?
- There are a number of ways to do this, simplest being *error rate*, or the proportion of mistakes made when we apply \hat{f} to our data:

$$ErrorRate = \frac{1}{n} \sum_{i=1}^{n} I(y_i \neq \hat{y}_i)$$

- Where I is an indicator variable that is 1 if $y_i \neq \hat{y}_i$, and 0 otherwise
- Given test observations of the form (x_0, y_0) , minimize the test error rate associated with:

$$Ave(I(y_0 \neq \hat{y}_0))$$

 We'll also assess prediction accuracy or the proportion of labels correctly categorized

Simple Linear Regression (OLS)

Assume a model

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

- ullet By estimating \hat{eta}_0 and \hat{eta}_1 we can generate predictions for our target \hat{y}
- Using least squares, we generate estimates of $\hat{\beta}$ by minimizing residual sum of squares (RSS), where $e_i = y_i \hat{y}_i$ represents the *i*th residual and

$$RSS = e_1^2 + e_2^2 + \dots + e_n^2$$

Simple Linear Regression (OLS)

Least squares minimizing values are found to be

$$\hat{eta}_1 = rac{\sum\limits_{i=1}^n (x_i - ar{x})(y_i - ar{y})}{\sum\limits_{i=1}^n (x_i - ar{x})^2}$$

- We can assess the accuracy of our coefficient estimates by generating standard errors and t-statistics in the usual way (no need to derive these here)
- ullet We can assess the accuracy of our model as a whole by examining Residual Standard Error or R^2
- We can introduce additional features into the model (multiple linear regression), provided we keep straight how to interpret those coefficients
 - ceterus paribus

Simple Linear Regression (OLS)

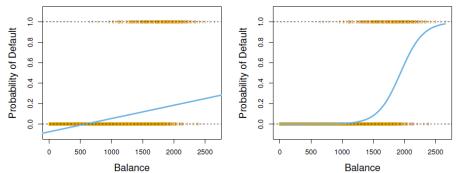
Despite the fact that our features *enter* the model linearly, we are not restricted to purely linear features

- Qualitative predictors (dummy variables)
 - All of the assumptions from QMI still apply!
 - Remember your no perfect collinearity assumption! One level must be dropped
 - model.matrix is a useful tool for encoding character/factor variables as dummies!
- Interaction terms (remember the hierarchy principle)
- Polynomial features

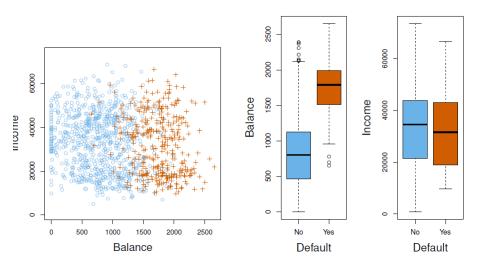
Review your notes from QMI and QMII for all of the above

Classification

- When we have *qualitative* response variables, we are no longer interested in predicting numerical values associated with Y, but instead some function f that estimates *probabilities* X belongs to one of a set of categories
 - i.e. What is the probability an individual will default on their credit card balance? What is the probablity a certain transaction is fraudulent? What is the probability a stock price will move up tomorrow?
 - How to estimate? We could use linear regression (linear probability model), but it's not well-suited for binomial targets



Classification



What we're looking for is a set of predictors that can *separate* out our classes
 This notion of *separability* is part and parcel of performing classification tasks

Logistic (Logit) Regression

- Models the *probability Y* belongs to a category, so in the Default \sim Balance example above, Pr(default = Yes|balance) (or just p(balance).
 - From predicted probabilities we can assign a class label (i.e. above 50%)
- We now frame our regression model as

$$p(X) = \beta_0 + \beta_1 X$$

- Linear probability models (LPMs) fitting a straight line to a binary response variable will result in predicted probabilities less than 0 or greater than 1!
- Enter the *logistic* or *sigmoid* function, which is an S-shaped curve that compresses values between 0 and 1

$$S(x) = \frac{1}{1 + e^{-x}} = \frac{e^x}{1 + e^x}$$

Logistic (Logit) Regression

• So this...

$$p(X) = \beta_0 + \beta_1 X$$

Becomes...

$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$

• And with a bit of manipulation...

$$\frac{p(X)}{1-p(X)}=e^{\beta_0+\beta_1X}$$

$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X$$

Logistic Regression

$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X$$

- We estimate this thing using maximum likelihood
 - Intuition: seek coefficient estimates such that the predicted probability of default is as close to what we actually observe as possible
 - Consult your QMII notes
- Recall that we *cannot* interpret the coefficients from this model straightforwardly
 - The thing on the left is the log-odds or logit increasing X by one unit changes the log-odds by β_1
 - Even then, since this isn't a straight line, probability estimates depend where we are on the line hence all the margins nonsense in QMII
 - Statistical significances/signs still apply for interpretation

Logistic Regression

```
fit <- glm(default ~ balance, data=ISLR::Default, family = binomial)
lmtest::coeftest(fit)

##

## z test of coefficients:
##

## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.0651e+01 3.6116e-01 -29.492 < 2.2e-16 ***
## balance 5.4989e-03 2.2037e-04 24.953 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1</pre>
```

Making predictions

 In order to generate probabilities of default, we use the inverse logit and plug in values:

$$\hat{p}(X) = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 X}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 X}} = \frac{e^{-10.6513 + 0.0055 \times 1000}}{1 + e^{-10.6513 + 0.0055 \times 1000}} = 0.006$$

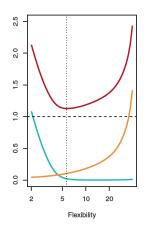
- Using these predicted probabilities, we can generate *predicted classes*, and evaluate the performance of the model using metrics like *accuracy*
 - Build a classification report to see how the model is actually assigning classes
 - Other common metrics include ROC/AUC curves and Precision-Recall curves (outside the scope of this session)
- All of the above applies with multiple logistic regression

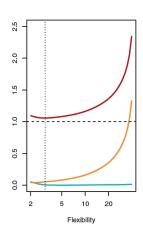
Training and Test error

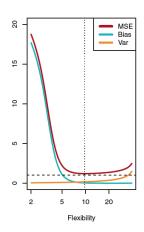
Recall that, in the predictive setting, there is a critical distinction between *test error* and *training error*

- We're really only interested in how well our models are performing out-of-sample (on unseen test data)
- Training error rate is likely to be different from test error rate, and more specifically is bound to *underestimate* it

Training vs. Test performance







Training and Test Error

What is a practitioner to do?

- Ideally, we'd like a designated test set we could take our trained model to and evaluate against
 - In practice, this is usually infeasible
 - Some evaluation metrics (e.g. Adjusted R^2 , AIC, BIC, etc.) make an adjustment for this; we will not discuss them here (covered in time-series).
- What we can do, is hold-out a subset of our training data to use as test data

Validation Set Approach

Create a hold-out or validation set from training data to compute an estimate of the test MSE (how would the model perform on unseen testing data)

- Randomly subset the data and partition off the validation set
- Train a model on the portion of the data not held out for validation
- Generate predictions using the observations in the validation set
- Compute some estimate of test error (MSE/RMSE for regression, misclassification rate/accuracy for classification)



Drawbacks

- Estimates of test error will be highly dependent on the observations held-out
- Using only a subset of the observations to train the model means that test error computed on hold-out set might actually be an *overestimation*
 - Less data = less accurate estimates
- Cross-validation helps to address these limitations

K-Fold Cross-Validation

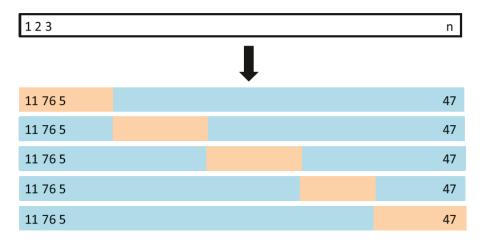
Industry standard approach for approximating the performance of a model out-of-sample

- Widely used
- Helpful for determining the best model for making predictions out of sample
- Provides a good approximation for how that "best model" will truly perform on unseen test data

Think multiple validation sets

- Divide up the data into K equal parts
- ullet Fit a model on K-1 of these parts, generate predictions on the k-th part, and compute test error on that portion
- Repeat for each part 1, ..., K
- When K = n, it's a special case called *leave-one-out cross-validation* (LOOCV)
- Best practice dictates using 5-10 folds
 - Too many folds actually reintroduces variance any idea why?

K-Fold Cross-Validation



LOOCV

1 2 3		n
	1	
1 2 3	•	n
1 2 3		n
1 2 3		n
1 2 3		n

Cross-Validated Test Error

Let the K parts be C_1 ; C_2 ; ...; C_K , where C_k denotes the indices of the observations in part k. There are n_k observations in part k: if N is a multiple of K, then $n_k = n/K$. - Our cross-validated test error is the following:

$$CV(K) = \sum_{k=1}^{K} \frac{n_k}{n} MSE_k$$

where

$$MSE_k = \sum_{i=1}^{C_k} \frac{(y_i - \hat{y}_i)^2}{n_k}$$

- The same principles apply for classification, but with a different error metric (misclassification rate, for instance)
- Be very careful doing this with time-series data any idea why?

Shrinkage Methods and Regularization

- There are ways we can *improve* the performance of our linear/least squares models on both the predictive and inferential dimensions
 - Models with tons of predictors that "chase" individual training data points might have poor fit out-of-sample (variance!)
 - Models with tons of predictors are going to be far more difficult to interpret, and it's possible we might be including variables that are irrelevant
- Shrinkage methods (or regularized models) can help us perform *variable* selection to arrive at an optimal subset of our overall set of predictors
 - These models will shrink our coefficients toward zero, which can reduce variance
 - Recall that *variance* refers to the amount by which \hat{f} would change if we estimated the function using different training data

Ridge Regression

• In least squares, we pick coefficients by minimizing RSS for *p* predictors:

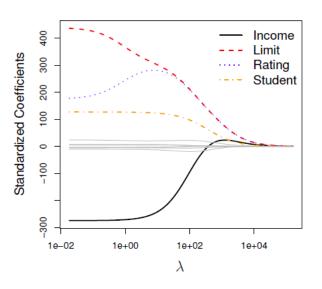
$$RSS = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} B_j x_{ij} \right)^2$$

- In $\it ridge\ regression$, we minimize a somewhat different quantity, by adding a $\it shrinkage\ penalty$ and $\it tuning\ parameter\ \lambda$

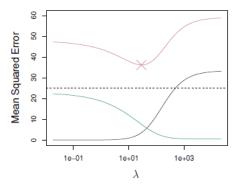
$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} B_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 = RSS + \lambda \sum_{j=1}^{p} \beta_j^2$$

- The second term (the shrinkage penalty) is *small* when $\beta_1,...,\beta_p$ are *small*, and λ determines how much the size of the cofficients should be penalized
- We'll use cross-validation to pick an optimal value of lambda

Ridge Regression using Credit data



Ridge Regression using Credit data



- Will perform best when least squares estimates have high variance (getting too flexible/complex)
- Will outperform lasso (generally) if all predictors have some relation to the response, in relatively equal proportion

A note on scaling

- While least squares models don't care about scale (coefficient estimates remain the same, but the intercept changes), some models are heavily impacted by the scale of the predictors
 - Intuition: Since the shrinkage penalty literally depends on the size of the coefficients, different scales can make a big impact
- Standard scaling is one option

$$\tilde{x}_{ij} = \frac{x_{ij} - \bar{x}_j}{\sigma_j}$$

- We can write a simple function to do this for us, or simply use the R function scale with provided defaults
- Fortunately, the glmnet function we'll use does scaling/standardization for us!

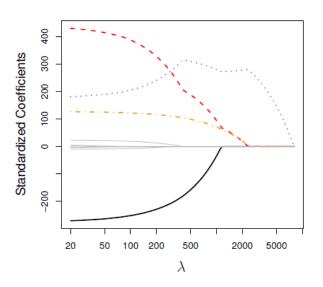
Lasso Regression

 Ridge regression keeps all predictors in the model, the lasso actually performs variable selection using a slightly different penalty

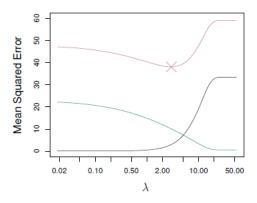
$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} B_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| = RSS + \lambda \sum_{j=1}^{p} |\beta_j|$$

- ullet This shrinks the estimates to zero as well, but actually forces some of those coefficients to zero when λ is high
- This has the desirable property of yielding sparser more interpretable models
- Again, choose lambda with cross-validation

Lasso Regression using Credit data



Lasso Regression using Credit data

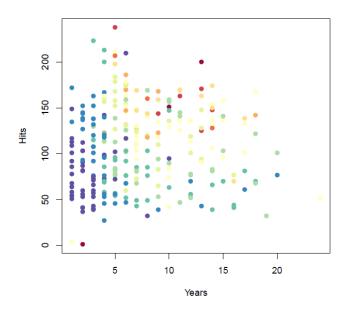


- Will outperform Ridge (generally) if only a subset of the predictors have a substantial impact on the response
- First-stage lasso can be valid approach for identifying a subset of relevant predictors out of a broader selection, especially in the face of hundreds of them

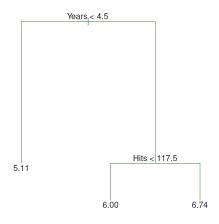
Decision Trees

- *Tree-based* methods involve segmenting the predictor space into subregions, and forming predictions based on how the space is split
 - The splitting rules resemble the branches of trees, hence decision trees
 - Not very powerful from a predictive standpoint
 - Simple and useful for interpretation, or understanding how a model might make decisions with your data
 - Mimics human thinking
- Tree analogy
 - Trees grow upside down (leaves on the bottom)
 - The leaves, or regions we divide into, are terminal nodes
 - Internal splits (the branches) are internal nodes

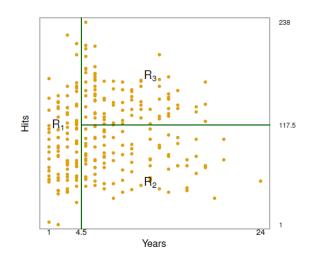
Baseball Salaries data example



Baseball Salaries data example



Baseball Salaries data example



And how!

Goal is to divide up the data into rectangular regions (boxes) that minimize RSS

- Uses a top-down (begins at the top of the tree and splits from there), greedy (makes the best choice at the current level, rather than entertaining subsequent possibilities) approach
- Continues until there are a minimum number of observations in each final region
- Predict the mean of the observations in a given region for observations that fall in that region
- Since this approach has a tendency to overfit the data, we apply a method
 called cost complexity pruning to essentially balance the tradeoff between
 having a very complex tree and how well the tree fits the training data
 - ullet Since our goal is to do well on test data, we strike a balance using a tuning parameter lpha, kind of like λ in the lasso
 - ullet We pick the best lpha with, you guessed it, cross-validation

Tree splitting algorithm

- Use recursive binary splitting to grow a large tree until each terminal node contains some specified minimum number of observations
- Use cost complexity pruning to obtain a sequence of better, smaller trees as a function of tuning parameter α
- ullet Use K-fold cross-validation to choose the optimal value of lpha
- lacktriangle Return the subtree that corresponds to this optimal value of lpha

Classification trees

- Very similar to regression trees, except predicts each observation belongs to the majority class of the region to which it is assigned (as opposed to the average)
- Instead of using RSS as the metric by which we split our trees, other metrics are available, typically either *Gini index* or *cross-entropy*
- Gini index

$$G = \sum_{k=1}^K \hat{p}_{mk} (1 - \hat{p}_{mk})$$

- In simple terms, this is a measure of *node purity* a small value here indicates that the node is "pure" and contains observations predominantly from a single class
- Other metrics are available we won't discuss them here

Trees: Pros and Cons

- Super easy to explain and intuitive likely even easier than linear regression
- More closely mimics human decision making than even OLS
- Small trees, in particular, can be displayed graphically and make sense to non-experts
- Handles categorical variables really well
- Bad predictive accuracy when applied out-of-sample (trees are highly susceptible to overfitting the specific data they are given)
 - Though, if your problem can't be modeled with a linear model, may do better

Bagging

- While individual trees are very limited, we can use many trees to improve performance, using a technique called boostrap aggregation or bagging
 - Bootstrapping involves generating repeated samples, selected with replacement, from a single training data set
 - Averaging a set of observations reduces variance
- Generate B bootstrapped samples:

$$\hat{f}_{bag}(x) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}^{*b}(x)$$

- And simply average the predictions!
- High level: Build a bunch (hundreds or thousands) of trees on bootstrapped data, and either average the predictions (regression) or the majority vote (classification)

RandomForest

- Tweaks bagging to decorrelate trees and thereby reduce variance
- Just as before, build lots of decision trees on bootstrapped samples
- BUT each time we split, only a random subset m of the p predictors is considered
 - At each split in the tree, the algorithm can't even consider a majority of the available
 - A really strong predictor will dominate in bagging, but if it isn't even up for consideration in some of the random forest trees, it gives others a chance
 - This decorrelates the trees, and leads to further reduction in variance
- ullet m here is a tuning parameter much like λ we can choose an optimal m with cross-validation
- State-of-the-art algorithm for predictive modeling, but results are very difficult to interpret
 - We no longer have any concept of a standard error
 - But, randomForest can offer "variable importance" metrics

Deliverable

Using one of four cleaned (for the most part) data sets, build and evaluate a predictive model!

- Independent variables (targets) are specified; up to you what to include as predictors
- Make some justification for why you picked the predictors you did, and why
 you chose the model you did (i.e. logistic regression for classification tasks)
- Evaluate the model! We know that metrics from fitting the training data don't map well to fit out of sample
- Briefly explain your process and your findings
- OPTIONAL: Use some of the other models we discussed to further motivate your analysis

Send me an email with your R file, along with your explanation either in commented lines in the file, or in a separate text/word document file

References

An Introduction to Statistical Learning (James, Witten, Hastie, and Tibshirani) serves as the basis for the material herein http://faculty.marshall.usc.edu/garethjames/ISL/ISLR%20Seventh%20Printing.pdf http://faculty.marshall.usc.edu/gareth-james/ISL/