
Introduction to R

Jared Berry

January 14, 2020

Jared Berry Introduction to R January 14, 2020 1 / 1



My goals

To convince you that:

R is widely used for a reason and a powerful asset to you in this field
R is incredibly flexible and not so difficult to learn
You can do just about anything in R that you can in other programming
languages/statistical software (with some limitations)
For early-stage data cleaning/manipulation, R is incredibly useful
It can be a powerful tool for automating mundane tasks
R is worth continuing to learn after we’re done here

Some caveats

Time
Learning curve/limitations of teaching programming in a classroom setting

Tons of resources for continuing to master this after we’re done here

Jared Berry Introduction to R January 14, 2020 2 / 1



(Rough) Plan for this course

Today

Learn what R is and the basics/idiosyncrasies of the language
Become familiar with the primary data types (objects) and how to work with
them
Using libraries/packages
The basics of data I/O, plotting, and modeling

Beyond

Conditionals and control flow
The basics of loops and user-defined functions
Some useful functions/tips/tricks for automation
Data cleaning and manipulation
dplyr (and other bits from the Tidyverse)
Some more advanced plotting in ggplot
Working through an extended example

If I’m going too slow or too fast, tell me

Jared Berry Introduction to R January 14, 2020 3 / 1



What is R?

R is an Open Source Statistical Package

As an open source package, code is free for anyone to view, use, or modify
Since no one owns it, no one can profit from it
Means that, since there is a communal effort and communal ownership, it’s free
Designed by statisticians, for statisticians

R (along with Python) is fairly ubiquitous in this field

Moving toward the industry standard for this work
Incredibly flexible
Extensive documentation
A vibrant online community for support and resources

stack overflow
CRAN

Jared Berry Introduction to R January 14, 2020 4 / 1



RStudio

RStudio is an integrated development environment (IDE) that builds on base R

More intuitive/user-friendly than base R
Makes it much easier to see what you’re doing
Has support for Git, R Markdown, local job management, and more

Your window

Script (upper-left)
Console (bottom-left)
Data overview/Environment (top-right)
Multifunction (bottom-right)

Jared Berry Introduction to R January 14, 2020 5 / 1



R Basics

R can function, at its most basic level, as a calculator

Simple arithmetic operations (e.g. +, -, *, /, ˆ,.)
3+5

## [1] 8

Somewhat more advanced operations (e.g. logs, trigonometric operations,.)
log(27)

## [1] 3.295837

Jared Berry Introduction to R January 14, 2020 6 / 1



R Basics

Variable assignment with either <- or =
x <- 4*8
x

## [1] 32

Some notes on style

Spacing
Leave space between operands

Naming variables
Using names like “data1”, “data2”, “myData”, “dframe”, “df”, etc. is bad and
only bad people do it

Commenting
Well commented code can save you literally hours of work

Jared Berry Introduction to R January 14, 2020 7 / 1



Data types in R

R is vectorized and, loosely speaking functional

Much like MATLAB, R is a vectorized language, which adds a tremendous
amount of power
We can think of everything in terms of vectors and matrices

No scalars!
Operations are vectorized as well

Most common data types (or objects) include:

Vectors
Matrices
Data Frames
Lists

We operate primarily by applying functions to objects that achieve a specific
outcome, rather than relying on the attributes and methods those objects ‘have’

Jared Berry Introduction to R January 14, 2020 8 / 1



Vectors in R

Most everything in R is built from vectors
# Create a vector with 'c'
x <- c(1,2,3)
x

## [1] 1 2 3
typeof(x)

## [1] "double"
length(x)

## [1] 3
str(x)

## num [1:3] 1 2 3

Jared Berry Introduction to R January 14, 2020 9 / 1



Vectors in R

Typical flavors are numeric, integer, character, logical, date, and factor (there are
many, many more)

Vectors are flat: check length with length and type with typeof (or class)
Check types with is.numeric, is.character, is.logical, etc.
Coerce types with as.numeric, as.character, as.Date etc.

# Create a vector with 'c'
y <- c("one", "two", "three", "4")
is.character(y)

## [1] TRUE
as.numeric(y)

## Warning: NAs introduced by coercion

## [1] NA NA NA 4

Jared Berry Introduction to R January 14, 2020 10 / 1



Vectors in R

Operations are vectorized and elementwise (unless specified)
#Vectorized operations
x <- c(3:5) # Note this is the same as c(3,4,5)
y <- seq(from=2,to=6,by=2) #Note this is the same as seq(2,6,2)

x / 2

## [1] 1.5 2.0 2.5
sqrt(x)

## [1] 1.732051 2.000000 2.236068
x - y

## [1] 1 0 -1

Jared Berry Introduction to R January 14, 2020 11 / 1



Vectors in R

To subset a vector we use [] notation, and specify an index
x <- c(1,10,8,5,2)
x[1]

## [1] 1
x[3]

## [1] 8

Jared Berry Introduction to R January 14, 2020 12 / 1



Matrices in R

The most common structure in R (the dataframe) is an extension of the matrix
# Assign a rote matrix in R
z <- matrix(1:9,3,3)
dim(z)

## [1] 3 3
z

## [,1] [,2] [,3]
## [1,] 1 4 7
## [2,] 2 5 8
## [3,] 3 6 9

Jared Berry Introduction to R January 14, 2020 13 / 1



Matrices in R

Again, R uses [] notation

i,j matrix notation
Empty rows (or columns) return all

X[2,]; X[,3]; X[2,3]
c() can be used to select multiple rows or columns

X[c(1,2,3,4,5),]
X[,c(1:3)]

Always: X[selection of rows, selection of columns]

Jared Berry Introduction to R January 14, 2020 14 / 1



Matrices in R

z <- matrix(seq(1,12),3,4)
z[2:3, 3:4]

## [,1] [,2]
## [1,] 8 11
## [2,] 9 12
z[,2:3]

## [,1] [,2]
## [1,] 4 7
## [2,] 5 8
## [3,] 6 9
z[,1]

## [1] 1 2 3

Jared Berry Introduction to R January 14, 2020 15 / 1



Dataframes in R

Dataframes are the most commonly used data object in R

Essentially a souped-up matrix with i,j notation
Each column is one type of data (i.e. character, numeric, date, logical, etc.)
Use [] notation to index in, can use column names or integer indexes
Most all data read into R will be in the form of a dataframe

str(df)

## 'data.frame': 3 obs. of 3 variables:
## $ nums_1: num 1 2 3
## $ nums_2: num 6 5 4
## $ strs : chr "a" "b" "c"
df

## nums_1 nums_2 strs
## 1 1 6 a
## 2 2 5 b
## 3 3 4 c

Jared Berry Introduction to R January 14, 2020 16 / 1



Reading in data in R

There are a lot of ways to read in data, and just as many places to get it

Use the setwd() function to set the working directory (or see the ‘Files’ tab)
We’ll begin with the most commonly used: read.csv
variable <- read.csv(file.path, ...)

We can pull in other types of data (dta, sas7bdat, SQL, etc.) with the help of
packages/libraries

install.packages and library commands
If you can think it, there is probably a package that can do it
More on this in a moment

Once data is in memory, the obvious next step is to inspect it

head, tail, str, names, nrow, ncol, dim, summary, table, unique, etc.
We can also grab summary statistics ad hoc

Jared Berry Introduction to R January 14, 2020 17 / 1



Reading in data in R

salaries_data <- read.csv("~/data_science/teaching/mief_r/intro_to_r/data/Salaries.csv", stringsAsFactors = F)
dim(salaries_data)

## [1] 397 7
str(salaries_data)

## 'data.frame': 397 obs. of 7 variables:
## $ X : int 1 2 3 4 5 6 7 8 9 10 ...
## $ rank : chr "Prof" "Prof" "AsstProf" "Prof" ...
## $ discipline : chr "B" "B" "B" "B" ...
## $ yrs.since.phd: int 19 20 4 45 40 6 30 45 21 18 ...
## $ yrs.service : int 18 16 3 39 41 6 23 45 20 18 ...
## $ sex : chr "Male" "Male" "Male" "Male" ...
## $ salary : int 139750 173200 79750 115000 141500 97000 175000 147765 119250 129000 ...

Jared Berry Introduction to R January 14, 2020 18 / 1



Dataframes in R

df[2,]

## nums_1 nums_2 strs
## 2 2 5 b
df[,3]

## [1] "a" "b" "c"
df[2,1]

## [1] 2
df[c(1:3),]

## nums_1 nums_2 strs
## 1 1 6 a
## 2 2 5 b
## 3 3 4 c

Jared Berry Introduction to R January 14, 2020 19 / 1



Subsetting dataframes in R

$ notation is preferred for selecting/working with columns

Requires the column name
$ returns the column as a vector, [] returns a data.frame
Less ambiguous, less error-prone
Can combine $ notation with [] for readability and automation
[[]] can be used to similar effect with integer indexes

There is a subset() function - I’d encourage you not to use it

Jared Berry Introduction to R January 14, 2020 20 / 1



Dataframes in R

df$nums_1

## [1] 1 2 3
df$nums_1[1:2]

## [1] 1 2
df[[1]]

## [1] 1 2 3
df[c("nums_1", "nums_2")]

## nums_1 nums_2
## 1 1 6
## 2 2 5
## 3 3 4

Jared Berry Introduction to R January 14, 2020 21 / 1



Lists in R

Objects which can act as a collection of varied data types

A list can contain any number of elements of vectors, matrices, dataframes,
etc.
Uses [[]] and $ notation for accessing elements, much like the data.frame
Very useful for storing multifaceted data and for automation purposes
Families of R functions work off of the list structure

Jared Berry Introduction to R January 14, 2020 22 / 1



Lists in R

my_list <- list()

my_list$a_vector <- c(1,2,3)
my_list$a_matrix <- matrix(seq(1,9),3,3)
my_list$a_dataframe <- df

my_list$a_vector

## [1] 1 2 3
my_list[[1]]

## [1] 1 2 3
my_list[[1]][1:2]

## [1] 1 2

Jared Berry Introduction to R January 14, 2020 23 / 1



Reading in more data in R

In order to pull in less ‘traditional’ data, we need to rely on functions outside the
scope of base R

Think of packages like apps, DLC, game expansions, etc.
Packages make R extensible, and give you access to a multitude of functions
‘off the shelf’
Free to download and use (open-source!)
Again, if you think it, there is probably a package that can do it
https://cran.r-project.org/web/packages/available_packages_by_name.html

To access new packages

install.packages("haven")
library(haven)
help(package = "haven")
To access a specific function in an installed package, without loading it, use
package::function

Jared Berry Introduction to R January 14, 2020 24 / 1

https://cran.r-project.org/web/packages/available_packages_by_name.html


Reading in more data in R

# install.packages("haven")
library(haven)
wage_data <- data.frame(read_dta("~/data_science/teaching/mief_r/intro_to_r/data/MROZ.dta"))
head(wage_data[1:9])

## inlf hours kidslt6 kidsge6 age educ wage repwage hushrs
## 1 1 1610 1 0 32 12 3.3540 2.65 2708
## 2 1 1656 0 2 30 12 1.3889 2.65 2310
## 3 1 1980 1 3 35 12 4.5455 4.04 3072
## 4 1 456 0 3 34 12 1.0965 3.25 1920
## 5 1 1568 1 2 31 14 4.5918 3.60 2000
## 6 1 2032 0 0 54 12 4.7421 4.70 1040

Jared Berry Introduction to R January 14, 2020 25 / 1



Writing data out in R

A typical workflow also involves performing analysis in R, and writing the data out
for use in other programs

Most commonly, use write.csv much the same as read.csv
writeRDS creates R-specific files with better compression
The packages above (and others) allow for writing out to more
niche/complicated file formats

readxl for writing out to Excel spreadsheets
haven for writing out to Stata, SAS, etc.

Jared Berry Introduction to R January 14, 2020 26 / 1



Basics of plotting R

R is especially powerful for data visualization

Base R plots are extremely customizable, and can get you a long way (?plot)
hist() and boxplot() are also available ‘off the shelf’
There are tons of great packages available, particularly ggplot2, to take you
even further
As always documentation is your best friend
https://www.r-graph-gallery.com/

Jared Berry Introduction to R January 14, 2020 27 / 1

https://www.r-graph-gallery.com/


Basics of plotting R
plot(wage_data$age, wage_data$wage)

30 35 40 45 50 55 60

0
5

10
15

20
25

wage_data$age

w
ag

e_
da

ta
$w

ag
e

Jared Berry Introduction to R January 14, 2020 28 / 1



Basics of modeling in R

Simple linear models (OLS) with lm

lm(y ~ x1 + x2 + x3 + ... + xn, data = data)
R is, first and foremost, a statistical computing language, so it’s modeling
capabilities can’t be understated
Unfortunately, we won’t delve much into this here

Jared Berry Introduction to R January 14, 2020 29 / 1



Basics of modeling in R

# Simple regression
fit <- lm(wage~educ, wage_data)
fit

##
## Call:
## lm(formula = wage ~ educ, data = wage_data)
##
## Coefficients:
## (Intercept) educ
## -2.0924 0.4953

Jared Berry Introduction to R January 14, 2020 30 / 1



Conditionals

==, !=
<, >
<=, >=
%in%
is.family
| and &
|| and &&

Jared Berry Introduction to R January 14, 2020 31 / 1



Conditionals
# Conditionals
1 < 2

## [1] TRUE
x < y

## Warning in x < y: longer object length is not a multiple of shorter object
## length

## [1] TRUE FALSE FALSE FALSE TRUE
x == y

## Warning in x == y: longer object length is not a multiple of shorter object
## length

## [1] FALSE FALSE FALSE FALSE FALSE
1 != 1

## [1] FALSE
x %in% z

## [1] TRUE TRUE TRUE TRUE TRUE
Jared Berry Introduction to R January 14, 2020 32 / 1



Conditionals

By themselves, conditionals seem boring/useless - used in control flow and for
subsetting, they are incredibly useful

The booleans generated from conditionals can be used for filtering data
TRUE and FALSE values deterime what is kept and what is dropped
Can be combined with which to return indices

Jared Berry Introduction to R January 14, 2020 33 / 1



Conditionals

# Using conditionals
x <- c(10,90,2,0,7,10,4)
x >= 10

## [1] TRUE TRUE FALSE FALSE FALSE TRUE FALSE
which(x >= 10)

## [1] 1 2 6
# Using conditionals in subsetting
dim(salaries_data)

## [1] 397 7
dim(salaries_data[salaries_data$salary > 100000,])

## [1] 256 7

Jared Berry Introduction to R January 14, 2020 34 / 1



Practice

Using the ‘Salaries’ dataset:

Using subsetting, drop the X index column
Create both a histogram and a boxplot of the salary variable
What proportion of the professors in the dataset are Female?
Conduct a simple linear regression of yrs.service on salary
Report the coefficients, standard errors, and confidence interval for the
regression specified above
Create a simple plot of yrs.service and salary
Using ?plot, create properly formatted labels and titles for the plot above
What is the average salary of the AssocProf rank?
Compute the standard deviations in salary for male and female professors,
separately
Which discipline has the higher median salary?
How many years of service does the 200th individual in this dataset have?

Jared Berry Introduction to R January 14, 2020 35 / 1



Warm-up

Read the state_unemp_clean.csv data into memory and assign it to a
variable of your choosing
Convert the date column to the date type (Hint: Use as.Date and reassign it
to the date variable; recall that you can assign a variable with
df$new_variable <- values)
Which state has the highest unemployment rate in the sample?
In what year was that rate reached?
What is the average household income across all the states in the sample?
Create a time-series plot of the unemployment rate in the state with the lowest
unemployment rate in 2016
Change the x- and y-labels and plot title to descriptive names
Using ?plot for help, change the type of the plot to a line graph

Jared Berry Introduction to R January 14, 2020 36 / 1



Control flow

Determine the behavior of your program based on a specified condition
if (condition) {

true_action
} else {

false_action
}

Jared Berry Introduction to R January 14, 2020 37 / 1



Control flow

a <- 7

if(a%%2 == 0) {
print("even")

} else {
print("odd")

}

## [1] "odd"
ifelse(a%%2 == 0, "even", "odd")

## [1] "odd"

Jared Berry Introduction to R January 14, 2020 38 / 1



Functions

When what you need isn’t available in base R or a package - write it!

User defined functions:

Make code easier to read
Reduce the possibility of human error
Can be called where/whenever once defined
Again, make automation/reproducibility easier

Rule of thumb: If you have to cut and paste the same complicated block of code
more than twice, it might be helpful to define a function that can do it for you

Jared Berry Introduction to R January 14, 2020 39 / 1



Functions

# A *very* simple function
square <- function(x) {

return(x**2)
}

square(3)

## [1] 9
square(x)

## [1] 100 8100 4 0 49 100 16

Jared Berry Introduction to R January 14, 2020 40 / 1



Loops

Two flavors

for
while
Critically important for automation tasks/reproducibility

We will loop across (unsurprisingly) vectors in R

This means we are not constrained to looping over indexes
Can loop over indexes, but also vectors of strings (i.e. IDs)

Jared Berry Introduction to R January 14, 2020 41 / 1



Loops

General structure

for/while (object in (vector of things to loop over)) {
code that is executed over each element of the vector of things to loop over
}

# Simple loop
for(i in 1:5){

print(i)
}

## [1] 1
## [1] 2
## [1] 3
## [1] 4
## [1] 5

Jared Berry Introduction to R January 14, 2020 42 / 1



Loops
#Loops - extending our mix of control flow and conditionals above
a_vector <- c(1,6,7,8,8293,21,888,3,-2)

for(i in 1:length(a_vector)){
if(a_vector[i]%%2 == 0) {

print("even")
} else {

print("odd")
}

}

## [1] "odd"
## [1] "even"
## [1] "odd"
## [1] "even"
## [1] "odd"
## [1] "odd"
## [1] "even"
## [1] "odd"
## [1] "even"

Jared Berry Introduction to R January 14, 2020 43 / 1



Practice

Specify a random vector using the following syntax rand_vect <-
round(100*runif(1000),0)

Write a function cube, which takes a value and returns that value cubed; write
a loop to apply this function to all the elements of the vector; print the cubed
values
Using a loop and control flow, check if each element of the vector is a perfect
square, if it is return the index, i, and print “Perfect square!”

Hint: Use x%%1 to check if your number is a whole number
Load the ‘salaries_list.Rds’ object into memory (readRDS())
Inspect the list; what does each element contain? What is distinct about
them?
Loop through the list, and return the average of the yrs.since.phd variable
for each element

Jared Berry Introduction to R January 14, 2020 44 / 1



Data analysis

Jared Berry Introduction to R January 14, 2020 45 / 1



Data cleaning and manipulation

Likely a big part of your next job

Typically involves. . .

Data aggregation
Merging together datasets from multiple sources
Dealing with missing values
Reshaping data
And more

Jared Berry Introduction to R January 14, 2020 46 / 1



‘Tidy’ data

“Like families, tidy datasets are all alike but every messy dataset is messy in its own
way.” - Hadley Wickham has sought to advance a “standard” of sorts for what
constitutes “tidy” data:

Each variable forms a column.
Each observation forms a row.
Each type of observational unit forms a table.

These principles are adopted with the intent of reducing the time spent on data
wrangling

More time for modeling/the fun stuff
Many packages to do this
Base R does just fine, but we’ll start working with dplyr here

Jared Berry Introduction to R January 14, 2020 47 / 1



Dealing with missing values

Missing values are ‘contagious’ and will interfere with summary functions

Generally, it’s okay to remove these, and we can do so by setting na.rm =
TRUE in summary functions

How to deal with missing values depends on your particular research question

is.na() (also good for ‘special’ missing values)
complete.cases()
na.omit()
df[is.na(df)] <- replacement - subsetting works with assignment too!

Jared Berry Introduction to R January 14, 2020 48 / 1



dplyr basics

Why dplyr?

Provides a grammar of data manipulation
Standardized - most all dplyr commands follow the same, general, structure
for arguments

newdata <- (data, selection/condition/formula/etc.)
Human-readable - it’s easier for those less familiar to follow code written with
human english

‘Does what it says on the tin’
Compatibility - works seemlessly with other tidyverse packages, and extends
base R
Fast, expressive, and agnostic about the format of your data
glimpse()

Jared Berry Introduction to R January 14, 2020 49 / 1



dplyr basics

5 simple commands to make your life easier

select() :: $ and []
filter() :: subset()
arrange() :: sort()
mutate() :: data$new_var <- var
summarise() :: aggregate()

Jared Berry Introduction to R January 14, 2020 50 / 1



dplyr basics

select()

newdata <- select(data, column1, column2,.)
Note the difference between - and !
! is used for negating rows and conditionals
- is used for negating column selection

Helper functions
starts_with, ends_with, contains, matches, everything()

filter()

newdata <- filter(data, conditions)
Remember your conditionals!

arrange()

Jared Berry Introduction to R January 14, 2020 51 / 1



dplyr basics

mutate()

summarise()

Jared Berry Introduction to R January 14, 2020 52 / 1



Pipes

One of the most powerful elements of dplyr programming is the pipe - %>%

“Pipes” data into a function
Defaults to first argument, taking advantage of dplyr’s standardization
Sends output from the function to the next
data1 %>% stuff is done to data1 and becomes data2 %>% stuff
is done to data2 etc.
Especially powerful when using group_by for subsetting

Jared Berry Introduction to R January 14, 2020 53 / 1



Merges and joins

Base R

cbind() binds data frames/matrices column-wise
rbind() binds data frames/matrices row-wise (requires columns share the
same name)

Requires equal numbers of columns/rows, respectively
Not a merge - does not involve keys

merge()

dplyr

bind_rows() and bind_cols() are better variants of the above
left_join()

One of many dplyr merge commands-most commonly used
mutating and filtering joins

Jared Berry Introduction to R January 14, 2020 54 / 1



Merges and joins

https://r4ds.had.co.nz/relational-data.html#understanding-joins

Jared Berry Introduction to R January 14, 2020 55 / 1

https://r4ds.had.co.nz/relational-data.html#understanding-joins


Practice
Merge in the World Development Indicators indicators data with the WEO data

Report countries that did not receive valid region identifers and remove them

Using dplyr and pipes (if you can!), in one chained command, create a subset
of the data that:

Has only those observations from the Europe & Central Asia region from
2016
Has only the country, gdp_cp, unemployment_rate, and curr_acc_bal
values

Change the units of unemployment_rate to reflect a percent with a mutate
command (divide by 100)

Find the average unemployment rate for this group

Create a time-series plot of Danish unemployment over the sample period

Find the average level of GDP for each income group

Which region has the largest within-region disparity in GDP per capita, as
measured by standard deviation?

Create histograms of the GDP per capita variable within each region, setting
the title of each plot to the name of the region (Hint: Use a loop across the
unique region names!)

Jared Berry Introduction to R January 14, 2020 56 / 1



Dates

as.Date(string, format)

lubridate

Jared Berry Introduction to R January 14, 2020 57 / 1



Useful functions for cleaning and automation

Regular expressions

gsub, sub, grep, grepl
Paste commands (string manipulation)

paste and paste0
substr
stringr

The apply family

Speedier loops in disguise
i.e. work through each element of a list or vector, each column of a dataframe,
etc.
lapply and sapply (with others)
lapply(data, function)

Reduce() and do.call() for condensing lists

do.call(list, function)

Jared Berry Introduction to R January 14, 2020 58 / 1



More tidying functions

There will be times where you confront data in the wrong ‘format’

Most commonly, time series data that is ‘wide’ (i.e. each variable is a year)
tidyr is a lightweight package to address this, without cumbersome loops
gather() will gather ‘wide’ data
spread() will spread ‘long’ data

Jared Berry Introduction to R January 14, 2020 59 / 1



More tidying functions

gather() and spread() are “retired”, and package owners are instead
encouraging pivot_longer() and pivot_wider()
pivot_longer() will gather ‘wide’ data, reducing the number of columns and
increasing the number of rows

pivot_longer(data=data, cols=columns to pivot into longer
format, names_to=name of the column to create from cols)

pivot_wider() will spread ‘long’ data, increasing the number of columns and
decreasing the number of

pivot_wider(data=data, id_cols=columns that identify each unique
observation, names_from=where to get names of columns)

Jared Berry Introduction to R January 14, 2020 60 / 1



A gentle introduction to ggplot2

Plots are built in layers of ‘geom’ functions

ggplot(data = mpg, aes(x = cty, y = hwy)) + geom_point()
qplot is a quick interface to work with ggplot, relying on useful defaults

Jared Berry Introduction to R January 14, 2020 61 / 1



ggplot2 layering

How does the ggplot() function work? By adding layers

Specify an input data set
Specify the columns to be used for x and y variables
Specify the type of plot

Jared Berry Introduction to R January 14, 2020 62 / 1



ggplot2

# Give ggplot an input dataset, and a variable to plot
ggplot(weo_2016, aes(x=unemployment_rate)) +

# Pick the shape
geom_histogram(bins=30) +

# Set some labels
labs(x = "Unemployment rate (%)",

y = "Frequency",
title = "Distribution of unemployment rates, 2016")

Jared Berry Introduction to R January 14, 2020 63 / 1



ggplot2

0

5

10

0 10 20
Unemployment rate (%)

F
re

qu
en

cy

Distribution of unemployment rates, 2016

Jared Berry Introduction to R January 14, 2020 64 / 1



ggplot2

# More geom layers
ggplot(weo_country, aes(x=year, y=unemployment_rate)) +

geom_point() +
geom_line() +
labs(x = "Year", y = "Unemployment rate (%)",

title = "Argentinian unemployment over time")

10

15

20

2000 2005 2010 2015
Year

U
ne

m
pl

oy
m

en
t r

at
e 

(%
)

Argentinian unemployment over time

Jared Berry Introduction to R January 14, 2020 65 / 1



ggplot2

# Assign the 'country' variable to the 'col' argument
ggplot(weo_countries, aes(x=year, y=unemployment_rate, col=country)) +

geom_line(size=1) +
labs(x = "Year", y = "Unemployment rate (%)",

title = "Unemployment rate in Latin American countries")

10

15

20

2000 2005 2010 2015
Year

U
ne

m
pl

oy
m

en
t r

at
e 

(%
)

country

Argentina

Brazil

Chile

Uruguay

Unemployment rate in Latin American countries

Jared Berry Introduction to R January 14, 2020 66 / 1



ggplot2

# Assign the 'year' variable to the 'fill' argument
ggplot(weo_years, aes(x=unemployment_rate, fill=factor(year))) +

geom_histogram(bins=50) +
labs(x = "Unemployment rate (%)", y = "Frequency",

title = "Distribution of unemployment, by year") +
scale_fill_discrete(name = "Year")

0

5

10

15

20

0 10 20
Unemployment rate (%)

F
re

qu
en

cy Year

2014

2015

Distribution of unemployment, by year

Jared Berry Introduction to R January 14, 2020 67 / 1



ggplot2

# Side-by-side using the 'facet_wrap' argument
ggplot(weo_years, aes(x=unemployment_rate, fill=factor(year))) +

geom_histogram(bins=50) +
facet_wrap(~factor(year)) +
labs(x = "Unemployment rate (%)", y = "Frequency",

title = "Distribution of unemployment, by year") +
scale_fill_discrete(name = "Year")

2014 2015

0 10 20 0 10 20

0

3

6

9

Unemployment rate (%)

F
re

qu
en

cy Year

2014

2015

Distribution of unemployment, by year

Jared Berry Introduction to R January 14, 2020 68 / 1



ggplot2 practice

Ensure you have weo_full in memory - if not, revisit the code from the
session_2.R file
Plot the GDP per capita values for the Europe & Central Asia region over
time, with each country as a separate color; label accordingly
Using dplyr commands (and pipes, if possible), plot the average
unemployment_rate over time, with each region as its own color; label
accordingly
Bonus: Try to replicate both of these plots using the qplot function

Jared Berry Introduction to R January 14, 2020 69 / 1



R Markdown

We’ve been working exclusively with R scripts (.R files)

R scripts are standard for writing reproducible code
R scripts are not particularly high-quality for presentation purposes

R Markdown wraps a markup language (think LaTeX, XML, etc.) around the R
programming language

R Markdown can embed all of your code into a ‘prettified’ HTML, PDF, or
Word file
With very little effort, you can put together high-quality reports and
presentations with embedded code and data visualizations

Jared Berry Introduction to R January 14, 2020 70 / 1



Resources

https://r4ds.had.co.nz/
http://adv-r.had.co.nz/
https://www.rstudio.com/resources/cheatsheets/
https://www.datacamp.com/
https://lagunita.stanford.edu/courses/HumanitiesSciences/StatLearning/Wi
nter2016/about

Jared Berry Introduction to R January 14, 2020 71 / 1

https://r4ds.had.co.nz/
http://adv-r.had.co.nz/
https://www.rstudio.com/resources/cheatsheets/
https://www.datacamp.com/
https://lagunita.stanford.edu/courses/HumanitiesSciences/StatLearning/Winter2016/about
https://lagunita.stanford.edu/courses/HumanitiesSciences/StatLearning/Winter2016/about

