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Passive Fund Management
The goal is to match, not outperform an index
Low cost, efficient
Active Fund Management
The goal is to outperform the benchmark index
Higher relative costs; most aren’t successful long term

Why beating the market (S&P 500) is so difficult
Our approach

Forgo predicting raw, absolute returns

Frame classification problem: will stock XYZ generate alpha (excess returns
relative to the S&P 500)

Model driven to detect stocks most likely to generate excess returns
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daily dates = pd.date_range(start=qtr_yr_map[ ]-min(),
end=qtr_yr_map[ ].max())

daily dates = [ (x)[: '] for x in daily_dates]

daily_df_map = pd.DataFrame(daily_dates, columns=[ 1)

pop_tickers = qtrly simfin[ 7 ].drop_duplicates().tolist()

daily dfs = []
for t in pop_tickers:
daily df = pd.merge(daily df_map,
qtrly_simfin[qtrly_simfin[
how= 5
on= ) - FFill()

daily dfs.append(daily_df)

daily simfin = pd.concat(daily dfs).reset_index().drop(

WRANGLING

Final post 201 1:Q1 dataset contains 1,010,378 unique ticker-date

instances as of COB 06/12/2019

Daily ingestion implies growth over time — we’re working with live data




Due to time-series considerations, proper calculation of our target is critical

Returns are calculated as:
AdjCloseyy,; — AdjClose, ;

AdjClosey ;

returng,n; =

TARGET

Relative returns, as:
relative. Teni ey = FERI Ty g — TERIMpem st so0 GENERATION

Binary targets, as:
1if relative_returng,,; > 0

target;; = . i
gett, 0if relative_returng;,; < 0
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Stock Momentum Theory

Tendency of strong returning stocks continue to perform well while weak
returning stocks continue underperformance

Basic momentum vs. investing in the S&P 500
Momentum Portfolio Construction
Buy the best returning stocks over a given period

Rebalance regularly
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ENGINEERING
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Generate stock price returns

def get_price_returns(time_series_df, ticker):
close = pd.DataFrame(basic.get_time_series_adjusted_close(time_series_df, ticker))
time_series_df.loc[ticker, 1 = close.pct_change(1).values
time_series_df.loc[ticker, 1 = close.pct_change(basic.MONTHLY_TRADING_DAYS).values
time_series_df.loc[ticker, 1 = close.pct_change(basic.YEARLY_TRADING_DAYS).values

return time_series_df FEATU RE
For each time tin the dataset (representing a trading day) ENG | N EERl NG

Sort percent change for all stocks in the S&P 500

Each stock is assigned a return rank value — simply the index of the sorted list



Momentum Quality

Rolling Moving Averages

Volatility—standard deviation of returns FEATURE

Relative Strength Index (RSI) — signal potential oversold/overbought ENGINEERING

conditions

SPY Return — Signal systematic market conditions
Earnings Per Share (EPS)

P/E Ratio — (EPS) / (Stock_Price)

Return on Assets (ROA)

Debt-to-Equity

Beta — Stock sensitivity to S&P 500 changes
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We perform EDA to :

Explore features’ relationships and detect collinearity

Test how our features are doing in panel and ticker-level hypothesis, the
two completely different approaches we are about to take

Make sound decisions on feature dropping and eventually feature
selection
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Feature Importances - Panel
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Feature Importances - Ticker
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Engineered features top for both panel and ticker-level approach

Ticker-level importances are of a mixed bag because the importance of
features differs across individual entities — difficulty in modeling the panel
features (important features might be pushed out)

Multicollinearity in engineered features — final selection of 27 features
(engineered in their majority)

FINDINGS
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Scikit-learn Timeseries splits

nlit #172
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Custom window splits

CROSS
VALIDATION

def n_day_ahead_split(indexer, train= , test= ', window=

buffer = indexer % test

end = train + buffer

start =

nile end < indexer:
train_indices = np.arange(start, end).tolist()
test_indices = np.arange(end, (end+test)).tolist()
end += test
if window:
start += test

train_indices, test_indices




Panel splits are calculated similarly with one major exception

Scikit-Learn TimeSeries splits are entity-agnostic — the first split contains the first
n-observations

Panel data reflects different entities at different points in time
Solution: program splits such that each entity is present in each time-series split

Same time-series folds, but each fold contains each ticker at those points in time

panel_split(n_folds, groups, grouping_var=

date_idx = (groups[[grouping_var]]
.drop_duplicates()
.sort_values(grouping_var)
.reset_index()
.rename({ : }, axis=1))

by_ticker_index = groups.reset_index().rename({ : }, axis=1)
by_ticker_index = (pd.merge(by_ticker_index, date_idx, on=grouping_var)
.sort_values( )
.set_index( »

ticker_range = (by_ticker_index[ ].unique().tolist())
splits = TimeSeriesSplit(n_splits=n_folds)

train_indices, test_indices splits.split(ticker_range):

panel_train_indices = (by_ticker_index[by_ticker_index[ J.isin(train_indices)]
.index
.tolist())

panel_test_indices = (by_ticker_index[by_ticker_index[ ].isin(test_indices)]
.index
.tolist())

d panel_train_indices, panel_test_indices

CROSS
VALIDATION




MODELING
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Performed both panel-level and ticker-level modeling
Panel-level accounts for the trajectory of related entities (industry-level effects)

Ticker-level focuses explicitly on the features/developments relevant for that entity

First pass: logistic regression, k-nearest neighbors, random forest,
gradient-boosting classifiers, and the LightGBM implementation

Focused predominantly on LightGBM (accuracy, speed, and tunability)

MODELING




First-pass, panel-level results are disappointing

Out-of-sample AUC and Fl-scores reliably around 0.50 for panel-level,
panel validation splits for all models

Marginal improvements in out-of-sample AUC scores for panel-level, time-series

MODELI NG validation splits

LightGBM outperform off-the-shelf Scikit-Learn models, marginally, but reliably




rue Fositive Kate

Panel-level regressions bear little fruit

Little lift in AUC/PR-curves - classification report a wash of 0.5s

Time-series splits outperform panel-splits

A model agnostic about entities is better — little, valuable information

about each individual unit

Dynamic threshold search is generally unhelpful
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At the ticker-level, non-trivial improvements in out-of-fold performance
Off-the-shelf Scikit-Learn TimeSeries splits, |12-folds (~160 obs. out-of-fold)
Average AUC across all 486 individual tickers of 0.60

Weighted-average Fl-scores of 0.57 (0.58 and 0.60 for positive class precision and
Fl-scores)

Robust even in small (10-50) samples of tickers
MODEL
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Using our custom-built 252 day (I-year) rolling-window training set and
21 day (6-months) validation set

~14 folds

Modest improvement in evaluation metrics

Information too far in the past is unhelpful MO D EL
- Receiver Operating Characteristic Curve EVALUATI O N
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Cross-Validation
Data too far in the past does not help - small deterioration >2 years out
By that logic, predicting a target too far in the future may be unrealistic
21-day validation fold reliably performs well, with AUC scores around 0.70
Smallest realistic set
May lead to overfitting
42-day (2-months), 63-day (3-months), and 84-day (4-month) also explored
Hyperparameter Tuning
More estimators (10,000+), better models
Models perform extremely well in-fold, symptomatic the LightGBM algorithm

Short (depth 2) trees with few leaves and bins (25) to address overfitting

MODEL
EVALUATION

AND TUNING




Quarter-ahead rolling window splits yield reasonable performance

Training window of 252 days (one year) and a test window of 63 days (one
quarter) - roll through and record performance out-of-fold

AUC curve across the basket of 0.66 (well beyond the panel-level coin-flip)
Weighted-average F|-scores of 0.58
0.56 and 0.57 precision and Fl-scores for the positive class

Scores improve to 0.62, 0.62, and 0.65, respectively, using threshold search

Final accuracy of about 62%

FINAL MODEL

Receiver Operating Characteristic Curve

7 LightGBM Classification Report - window CV
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APPLICATION




Applying model to a theoretical portfolio

Begin with a passive style fund that tracks S&P 500 returns

Group high and low conviction stocks based on model probability scores
at the ticker level APPL'CAT'ON
Reduce portfolio allocation to the low conviction stocks and in turn
increase position in high conviction

Rebalance monthly




NEXT STEPS

Features that capture the emotion
and geopolitical narratives

More intensive, purpose-built
modeling (LSTM, leverage GPUs)

Address window cross-validation
split optimization problem

—_— S =2 .
Application development: historic
returns, predicted performance,
host with all tickers, top rankings
N S =

Map to real returns and backtest —
what returns does this provide the
individual investor
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Passive Fund Management — Portfolio of assets intended to track a benchmark index

Active Fund Management — Any portfolio constructed with the intent to outperform a
benchmark index

S&P 500 — Index of 500 U.S. stocks based on market cap and is commonly used as a
representation of the stock market as a whole

Volatility—standard deviation of returns
Momentum — Price Return over a given time period
Momentum Quality — Metric dependent on price return and price path smoothness

Momentum Effect — The tendency of high returning stocks to continue outperforming
while weak returning stocks underperform

Relative Strength Index (RSI) — signal potential oversold/overbought conditions
SPY Return — Signal systematic market conditions

Earnings Per Share (EPS)

P/E Ratio — (EPS) / (Stock_Price)

Return on Assets (ROA)

Debt-to-Equity — Measures degree financial leverage

Beta — Stock sensitivity to S&P 500 changes

GLOSSARY




