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ABSTRACT 

It is generally accepted that the individual investor can expect more reliable, less volatile                           

returns by allocating resources into funds that cover a wide-swath of the market, rather                           

than chasing down returns on individual stocks. This most commonly manifests as                       

allocating those resources into an index fund such as the S\&P 500, which historically                           

outperforms bear markets and corrections in the long-term. We build on this heuristic,                         

and propose a strategy of passively holding a well-diversified selection of assets (i.e.                         

those listed in the S\&P 500), along with leveraging leading indicators of predicted                         

performance of underlying assets to adjust holdings accordingly. Using financial markets                     

and fundamentals data, we construct a machine learning model for classifying positive                       

returns in a basket of S\&P 500 stocks, relative to performance of the market. We rely on                                 

purely financial and time-based features informed by the finance literature, and employ                       

a number of cross-validation frameworks to generate appropriate out-of-sample                 

performance metrics. Leveraging a number of popular machine learning models with                     

our curated data set, we find optimal predictive performance is achieved using                       

finely-tuned ensemble learning frameworks estimated at the ticker-level, restricting the                   

size of out-of-sample validation folds to reflect the presentation of the prediction                       

problem in the real world. Using the results of these models, we provide users an                             

interface to view predicted probabilities of out-performance in a prevailing time horizon,                       

along with quality-of-prediction scores, for all of the tickers in our basket. 

BACKGROUND 
 

The mutual fund industry has seen tremendous inflows of capital into passively                       

managed funds that seek to simply match the returns of benchmark indices such as the                             

S&P 500, despite reputed financial research illuminating a number of relatively simple                       

and backtested portfolio construction strategies that outperform the market over long                     

periods. While investing in a passive fund may be an appropriate strategy for a large                             

number of people, it forgoes all attempts of optimization in exchange for low cost                           

efficiency, and the comfort of knowing that returns will match the market as a whole.                             

Based on this consideration, the project will employ the full data science pipeline by                           
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attempting to build a tool that can help optimize the traditional passive fund without                           

demanding excess expenses. Furthermore, the goal of the project will be to engineer a                           

feature space containing financial metrics associated with potential alpha—returns in 

excess of the S&P 500—and to train a machine learning model to predict stock                           

performance relative to its benchmark index. 

THE PROBLEM 

We recognize that, 1) index funds are incredibly difficult to beat using active investing                           

approaches, and 2) predicting stock prices is an incredibly difficult task in and of itself.                             

The random walk theory prescribes that stock prices can be generally modeled as                         

following a random walk process, which would imply that the only useful information                         

for predicting a stock’s value tomorrow is the value today. Despite this, countless                         

quantitative hedge funds and individual investors seek to optimize portfolio holdings by                       

pouring money into stocks predicted to outperform their peers. Further, given that so                         

much of today’s market participants are underscoring their decisions with rigorous                     

quantitative methodology/AI, we hope to divine, to the extent possible, some signal                       

through the noise, and arm investors with an additional leading indicator for stock                         

performance in a monthly window.  

Moreover, recognizing the dominance of index funds for reliable returns in the                       

long-term, we hope to pair the long-term viability of a passively managed fund for                           

reliable returns with signal derived from machine learning prediction of those returns to                         

better leverage such a passive fund. Examining returns relative to an index fund over a                             

longer time-horizon contextualizes this firmly in the passive stock fund management                     

space. Traditional time-series models, however, tend to perform particularly poorly in                     

long-horizons, and a random-walk model would be completely untenable at a horizon of,                         

say, one month ahead. As such, using more robust machine learning approaches,                       

particularly those that are agnostic about specification and functional form, are likely to                         

overcome these limitations. 

HYPOTHESIS 

Recognizing that markets today are driven, in large part, by high-frequency and                       

algorithmic training, we hypothesize that, despite the inherent noisiness surrounding,                   

and difficulty predicting, stock price movements, using machine learning should allow us                       

to exploit some signal in the noise. Using a curated selection of features developed from                             
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financial markets and fundamentals data informed by the finance literature, along with                       

machine learning algorithms, that are agnostic about the form of the relationship                       

between our features and a future returns target, can we predict returns in excess of a                               

benchmark index? 

In order to more carefully frame our exercise, we seek to predict returns in excess of the                                 

S&P 500 and intend to frame these returns in the context of a classification problem.                             

Rather than predicting absolute returns, we seek to predict whether a given asset in the                             

S&P 500 basket will outperform the S&P 500 in a prevailing time-period. The resulting                           

predicted probabilities of outperformance, along with metrics about the quality of that                       

prediction, could serve as useful leading-indicators to optimize a passive stock fund. 

PROJECT OVERVIEW 

Before attending to a thorough discussion of our project in the context of the data science                               

pipeline, it is appropriate to discuss the project at a high-level to inform the purpose and                               

underlying research questions we seek to address. 

● Purpose: Provide passive stock fund investors additional, leading indicators about                   

relative performance about the stocks contained in their portfolio to adjust                     

holdings accordingly, informed by machine learning algorithms run on                 

well-established financial features derived from markets and fundamentals data. 

● Unit of Analysis: Ticker-level data, with financial characteristics available at a                     

business-daily frequency, since 2011. Our instance is the ticker-level data for one                       

of the 500, S\&P 500 listed stocks at a given point in time. 

● Research Questions: 

○ Are financial features derived from markets and fundamentals data, alone,                   

predictive of relative returns of S&P 500 stocks? 

○ Which features are most relevant for informing these predictions? 

○ Are the characteristics of other assets in the basket relevant for prediction                       

(i.e. does panel-level prediction outperform ticker-level prediction)? 

● Hypothesis: Derived features from financial and market data will be predictive of                       

relative returns for individual stocks in a panel-level data set of S&P 500 stocks. 

PROJECT ARCHITECTURE 

Below, we will attend in detail to our pipeline, and the steps therein to address our                               

research questions and hypothesis. 
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DATA INGESTION 

We initially explored Yahoo! Finance, IEX, Quandl, Wharton Research Data Services                     

(WRDS), Tradier, Alpha Vantage, and SimFin to source the market and fundamentals                       

data necessary to perform our analysis. Based on pricing and ease of use, we chose to use                                 

the Yahoo! Finance API for market data, and SimFin or fundamentals data. The ingestion                           

framework for both of these sources are detailed below. 
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Yahoo Ingestion 

We chose Yahoo! Finance as our primary source for financial markets info, largely due to                             

easy integration with Python through pandas DataReader. Each day, we pull all listed                         

S&P 500 stocks from the Yahoo API since the most recently pulled date and ingest directly                               

into a Postgres database hosted on the Google Cloud. We note that the tickers listed on                               

the S&P 500 index do change over time (i.e. DWDP was removed from the S&P 500 list on                                   

June 3rd), which necessitates daily scraping of the latest list of S&P 500 tickers to ensure                               

the list is populated correctly, relative to the day we pull. Raw Yahoo! Finance data                             

contains a small selection of standard financial markets features (’High’, ’Low’, ’Open’,                       

’Close’, ’Volume’, ’AdjClose’ [or adjusted close]), and we derive some additional                     

time-based features such as ’Dayofweek’, ’Dayofyear’, ’Is_month_end’, ’Is_month_start’,               

’Is_quarter_end’, ’Is_quarter_start’, ’Is_year_end’ and ’Is_year_start’. These help to group                 

data by day for standardization, and allow us to capture some measure of seasonality in                             

the stock prices. In addition, we pull the SPDR S&P 500 ETF (SPY) index (an ETF which                                 

tracks the S&P500 and serves as our proxy for the S&P 500 from here on) to generate                                 

targets, using the same techniques as above. The Postgres database these data, along with                           

the SimFin data discussed below, are stored in serves as our WORM store for feature                             
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engineering and modeling pipelines further on. 

SimFin 

Fundamentals data is remarkably difficult to source without steeply-priced subscriptions                   

to providers like Bloomberg and Quandl. SimFin provides free access to an API with data                             

for 2,470 companies, covering over 266,943 financial statements, scraped directly from                     

freely-available 10-K regulatory reports. Using the SimFin API, we pull in quarterly cash                         

flow, balance sheet, income, and shares statements for listed S&P 500 companies from                         

2011:Q1 through 2019:Q2. Automated pulls are not set up for this source because                         

fundamentals data is only available at a quarterly frequency. We pull as needed, for this                             

analysis, but have functionality set up to hit the API in an automated fashion, should that                               

functionality be necessary further on. This quarterly data is standardized in the code                         

which conducts the pulls, and is presently stored in flat files, which are loaded into the                               

SimFin wrangling code detailed below to transform them into a synchronous,                     

daily-frequency dataframe which is stored in Postgres. Prior to wrangling, the SimFin                       

fundamentals data sets boast a combined 127 features. 

DATA WRANGLING 

While the Yahoo! Finance data is quite tidy and ready to go directly out of the API, the                                   

SimFin data requires significantly more effort to normalize. Our quarterly SimFin data,                       

as it is pulled from the API, poses a problem for merging into the business-daily Yahoo!                               

Finance data: 1) We do not have information about when earnings reports and                         

statements are released; 2) Quarter-end dates do not necessarily coincide with business                       

days; 3) In order to avoid a significant amount of missing data, our quarterly data needs                               

to be responsibly converted to daily. Unfortunately, we do not have a solution for this                             

first issues, so can only merge the data on quarter-end dates.  

We can address points 2) and 3) simultaneously. After pulling all quarterly statement                         

data into memory and merging on ticker, we create a separate data set containing a                             

single column with all dates from 2011:Q1 to the maximum date in the quarterly data set.                               

We merge each ticker to this data frame to stably match the quarter-ends that are                             

populated for each ticker to a daily data set, without needless duplication of entries. We                             

then forward fill the quarter-end values through to the next populated quarter,                       

populating a daily-frequency data set of all fundamentals features. While the financial                       

statements are with respect to the prior quarter (i.e. the 2011:Q1 statements capture                         

what occurred from 01/01/2011 to 03/31/2011), we would not have that information                       
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available during the quarter, so use it for the next quarter when that information would                             

be available. As such, we prevent the leakage of future data into the past, an issue we                                 

have to be immensely cognizant of in this exercise.  

Additionally, since the data set is stored at the daily-frequency, we no longer need to                             

worry about quarter-end dates taking place on non-business days, and can perform a                         

stable merge onto the Yahoo! Finance data. We also remove sparse features, especially                         

considering the incidence of missing values is compounded when converting the data to                         

a daily frequency. Features which are missing for more than 15% of total observations                           

are removed, though far fewer are captured in our final model (see Feature Selection).  

As all data is stored at the ticker-day frequency, merging is straight-forward across all                           

data sources, so long as keys are aliased correctly for merges. We merge momentum                           

features onto the Yahoo! Finance data, and then merge the daily SimFin data onto this.                             

As our data is real-world data, updating daily in real time, we note that the raw data set                                   

contains 1.04 million observations of 87 unique features across both data sets, for 506                           

unique ticker, as of June 5, 2019 

FEATURE ENGINEERING 

Based on the basic set of daily stock data ingested from the yahoo api, we were able to                                   

engineer additional features that provide insight into stock momentum. In general terms,                       

stock momentum attempts to capture stock strength based on the price movement over a                           

certain time interval. In context of the project, momentum is simply the price return                           

over a certain time period.  

The decision to explore stock momentum features is based on research that shows that                             

portfolios constructed with the highest ranking momentum stocks, i.e. the ones with best                         

price returns, outperform weak momentum portfolios and also the S&P 500 (Gray &                         

Vogel, 86). Moreover, portfolios constructed to capture intermediate momentum with a                     

twelve month look-back window outperform both short term and long term momentum                       

stock selection strategies (86). This finding aligns very well with the project goal since the                             

model will be trained with target variables looking one month ahead.  

Therefore, to generate features that intend to capture intermediate term momentum,                     

rolling price returns will be calculated on a monthly and yearly basis. The basic yahoo                             

dataset has a time series ‘Adjusted Close’ feature for each stock. The                       

‘Pct_Change_Monthly’ and ‘Pct_Change_Yearly’ momentum features are calculated by               

taking the percent difference of the adjusted close at time t and the adjust close at time t                                   
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– n, where n is the number of look back days for the period. Since each date in the                                     

dataset is a trading day, n will be 252 for a yearly look back and n will be 21 for a                                         

monthly period. 

Once we have price returns with a look back of one year and a look back of one month,                                     

the rankings can then be calculated to capture the research supported benefits of                         

intermediate term momentum and short term momentum (Long term momentum which                     

looks back sixty months as defined by Gray & Vogel (81) was left out since our dataset                                 

only spans from 2011-present). The momentum (price return) rank features are labeled                       

‘Return_Rank_Yearly’ and ‘Return_Rank_Monthly’ for the intermediate and short term                 

basis, respectively. For each day in the time-series dataset, the percent change values of                           

each stock listed in the S&P 500 are sorted from greatest to least return. The momentum                               

rank is simply the index position obtained from the sorted list. Thus, the top momentum                             

ranked stocks have distinct integer values closer to zero while the weaker momentum                         

stocks have rank values closer to five-hundred. 

In addition to the momentum rank features above which offers insight into relative price                           

performance, a more robust momentum strength metric can be generated by taking into                         

account price path quality. Momentum quality that accounts for price return and path                         

smoothness is based on the Frog-In-The-Pan (FIP) hypothesis, which posits “​a series of                         

frequent gradual changes attracts less attention than infrequent dramatic changes. In                     

support of the FIP hypothesis, given a set of strong momentum (high returning) stocks,                           

choosing subsets with smoother price paths outperform subsets composed of more                     

choppy, volatile paths (Da, Gurun and Warachka (2012)). Investors therefore underreact                     

to continuous information​” (Da, et al 2012). ​The purpose of generating a momentum                         

quality score is to capture high returning stocks that receive less market attention, which                           

can be a source of alpha. 

To quantify path quality in a given time period, the percentage positive returning days                           

relative to the percentage of negative returning days will be used to signal path                           

smoothness. With this in mind, combining path quality with absolute price return, we                         

arrive at the following equation adapted from Da, et Al that can be used to represent                               

momentum quality:  

  MomentumQuality = +-(stock_return)(pct_up_days – pct_down_days) 

where stock_return is the price return based on a predetermined number of look back                           

days, pct_up_days is the percentage of positive returning days, and pct_down_days is the                         

number of negatively returning days. The above is used to generate the                       

9   



‘Momentum_Quality_Yearly’ and ‘Momentum_Quality_Monthly’ features. 

In addition the research supported momentum features, the group decided to also                       

include stock volatility, relative strength index (RSI), and also the trailing one month                         

return of the SPY exchange traded fund that tracks the performance of the S&P 500.                             

Volatility is simply the standard deviation of the stock price over a given time period                             

divided by the stock price. The RSI is an oscillating value between zero and one that                               

accounts for price change and speed. Last, the trailing S&P return feature is included to                             

help signal systematic trends in the market. 

We also construct a market beta feature to more empirically capture the relationship                         

between our ticker-level returns and the S\&P 500 index. The beta feature is                         

well-established in the finance literature (specifically as it is used in the CAPM pricing                           

model), and is computed by scaling the covariance between the market and an individual                           

asset by the variance of the market, and so behaves similarly to a regression coefficient.                             

We compute this feature on a rolling-basis, with the previous 21 trading days as the                             

horizon to calculate the beta for a given day. 

In addition to features generated using the financial markets data, we leveraged the                         

fundamentals data sourced through SimFin to construct common financial ratios that are                       

typically used to value companies or provide indicators of financial health and                       

performance. We construct: earnings per share (EPS), price-earnings ratio, debt ratio,                     

debt-to-equity ratio, and return on assets (ROA) features. All of these features (with the                           

exception of debt-to-equity) are constructed using both financial market and                   

fundamentals data, so still vary at the business-daily frequency. Lastly, we construct a                         

number of returns relative to a number of different horizons and add smoothed (using                           

exponential moving average smoothing) variants of all of the above features as potential                         

alternatives to the noisier originals. 

We perform standard-scaling to normalize units across features, at the ticker-level for                       

the ticker-level modeling framework and at the day-level for the panel-level framework.                       

Missing values are replaced with zeros, which reflect the mean in scaled features. 

● Pct_Change_Class 

● Rolling_Yearly_Mean_Positive_Days, 

● Rolling_Monthly_Mean_Positive_Days 

● Rolling_Monthly_Mean_Price 

● Rolling_Yearly_Mean_Price 

● Momentum_Quality_Monthly 
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● Momentum_Quality_Yearly 

● SPY_Trailing_Month_Return 

● Pct_Change_Daily 

● Pct_Change_Monthly 

● Pct_Change_Yearly 

● RSI 

● Volatility 

● Yearly_Return_Rank 

● Monhtly_Returns_Rank 

● Pct_Change_Class 

● Rolling_Yearly_Mean_Positive_Days 

● Rolling_Yearly_Mean_Positive_Days 

● Rolling_Monthly_Mean_Positive_Days 

● Rolling_Monthly_Mean_Price 

● Rolling_Yearly_Mean_Price 

● Momentum_Quality_Monthly 

● Momentum_Quality_Yearly 

● SPY_Trailing_Month_Return 

 

COMPUTATION AND ANALYSIS - TARGET LABEL CALCULATION 

Of paramount importance to our modeling pipeline and predictive analysis is proper                       

framing of our target. As stock return prediction is inherently a time-series problem,                         

framing our target in a way that prevents leakage and accurately reflects the state of the                               

world we seek to predict is crucial for useful results. Returns are, by definition,                           

calculated as the percentage change in the price of a stock from one point in time to                                 

another. In our case, we calculate returns on the adjusted close (​Ad jClose​) feature from                             

the Yahoo! Finance data set. Thus, the raw, n-day ahead return for stock ​i at time t is                                   

calculated as: 

 

Returns on the S&P 500 are calculated using the same formula, at the same point in time,                                 

t, over the same horizon t+n. As we seek to frame this as a problem of relative                                 

performance of the ith stock with respect to the index, our target is calculated as the                               
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difference of the return of the ith stock and index return, calculated as: 

 

Moreover, in order to abstract away from a standard continuous regression framework,                       

we simplify our target as a binary variable to leverage classification models and                         

associated performance metrics. As such, our final target is calculated as follows: 

 

We explored a number of possible targets (rank, moving-average returns, absolute                     

returns as opposed to relative) and horizons (1-, 5-, 10-, and 21-days ahead). We settled                             

on relative returns to more closely contextualize our exercise in the passive fund space.                           

For the purpose of this analysis, we use relative returns over a 21-day horizon (i.e.                             

month-ahead in terms of trading days). The reason for this horizon is threefold: 1)                           

Month-ahead return is a fairly standard horizon, (as opposed to an arbitrary selection of                           

trading days ahead); 2) horizons greater than one day ahead are significantly harder for                           

workhorse time-series models to perform on (particularly random-walk and auto                   

regressive models), justifying the use of a more complex approach; and 3) given our                           

emphasis on passive investment, 21-days ahead is a reasonable horizon for rebalancing,                       

rather than predicting and rebalancing each day-ahead. This also provides us with a                         

natural hold-out set upon which we can develop our product. At any given point in time,                               

we cannot know what will prevail over the next month, so can use models fitted on data                                 

for which we do have the target to predict what will happen now.  

Attending briefly to the time-series properties of our target, we conduct Augmented                       

Dickey-Fuller tests at the ticker-level to determine whether our series exhibit unit root                         

processes. We find that, for all tickers in our sample, we can soundly reject the null                               

hypothesis that our target contains a unit unit, implying a degree of stationarity and                           

predictive value contained in lagged variants that is essential for us to expect any kind of                               

result moving forward. 

EXPLORATORY DATA ANALYSIS & FEATURE SELECTION 

Exploratory Data Analysis (EDA) is the phase where a preliminary, but also crucial first                           

“dive” into the data takes place. In his ​Experimental Design and Analysis ​(2018), Seltman                           
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calls it “a critical first step in analyzing the data” and explains that “the main reasons to                                 

perform it, is to detect mistakes, check assumptions, make a preliminary selection of                         

appropriate models to determine relationships among the explanatory variables, and,                   

finally, assess the direction and size of the relationships between exploratory and                       

outcome variables”. 

As explained in the chapters above, for our project, EDA needed to take place in two                               

stages: on an aggregate level, after the wrangling of the data collected from different                           

sources, so as to investigate the relationships between different features; and on a                         

approach-specific level to account for both the panel and the ticker-level analysis of our                           

data. 

In the initial exploration of our features’ relationships, 45 features (a combination of                         

categorical and numeric variables) were included. For these, summary statistics were                     

extracted, and several correlation matrices were plotted to determine feature                   

relationships. 

During EDA, we detected multicollinearity among certain features, mostly the ones                     

constructed from raw ones, like in the case of the five Yahoo!Finance features, ‘High’,                           

‘Open’, ‘Low’, ‘Close’ and ‘Adjusted Close, and the momentum indicators. Based on the                         

detection of one-to-one relationship between features, as illustrated in the Yellowbrick                     

Pearson correlation matrix below (Figure 2), we were able to soundly exclude a                         

preliminary set of features from our analysis. 
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Figure 2. Pearson feature correlation matrix  

Since we explore this hypothesis at both the ticker- and panel-levels, we inform our                           

feature selection through both our exploratory data analysis and first-pass modeling,                     

with plots of both regression models. The panel-level feature importance plots reflect                       

feature importance in the aggregate, whereas the ticker-level feature importance plots                     

reflect average importance across all tickers, individually. As such, we expect overlap,                       

but a different ordering of importance since these are two different framings of the                           

question at hand. 

Fortunately, engineered features do float to the top of our feature importance plots for                           

both specifications of the model (see Figures 3 and 4 below). The market beta feature,                             
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beta, tops the ticker-level chart, and sits fourth in our panel-level regressions. It’s worth                           

noting that very few non-engineered features appear important at all in the panel-level                         

models, and the combined fundamentals and markets data tops the list of importances.                         

The ticker-level importances are more of a mixed bag, and the decrease in importance                           

from feature to feature occurs more slowly, likely because the importance of features                         

does differ reliably across individual entities. This might also shed some light on the                           

difficulty of modeling the panel - features that might be significantly important for                         

specific entities may be pushed out in the panel-level, handicapping overall                     

performance.  

Based on these importance plots, and the determination of significant multicollinearity                     

in some engineered features, we arrive at a final selection of 27 features, of which, five                               

are raw financial markets features, two are time based, 17 are engineered from financial                           

markets data, and three are constructed using a combination of fundamentals and                       

financial markets data. 

 

Figure 3. Feature ranking at panel level 
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Figure 4. Feature ranking at ticker level 

Since understanding our target is so critically important to the viability of our project, it                             

is worth taking a moment to visualize it directly. As we have over 500 individual tickers                               

in our data set following different paths, it would be burdensome to chart the path of                               

each. For the sake of illustration, we examine the returns for Apple (ticker symbol AAPL).                             

Below, we display the 21-day ahead relative returns for AAPL, along with green and red                             

rugs to signify up and down days from which our binary target is derived. Further, we                               

illustrate the lag structure of our target. Since we are not doing pure time-series analysis,                             

this is not of paramount importance, but does help us to understand that there is serial                               

autocorrelation present in our target (i.e. data from the past is predictive of the future).                             

This is preferable to a series that evolves truly at random, which would be nearly                             

impossible to model, despite our best efforts. 
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CROSS-VALIDATION FRAMEWORK 

As alluded to in our discussion of the target we seek to predict, the time-series nature of                                 

our data necessitates very careful application of a cross-validation framework to                     

accurately reflect out-of-sample performance as it would present in the real-world. We                       

explore modeling frameworks in both a panel-level context, and ticker-level context.                     

Regardless of the level of analysis, time-series splits are critical to prevent leakage of                           

future stock-price information into the training set. Standard time-series splits prevent                     

the use of future data in training data, so gradually expand the training set to predict a                                 

validation set containing only future data, consist with the real world prediction problem                         

we face. 

In the panel-level context, our data set consists of approximately one-million                     

observations, (roughly 2,000 trading days worth of data for 500 stocks). Time-series splits,                         

out-of-the-box, offer one framework for predicting the returns of the stocks on the panel,                           

but are inherently agnostic of the ticker-level characteristics of our data set. Thus, in                           

order to ensure each fold contains information about ​all entities, we implement a                         

user-defined panel-splitting function that iteratively constructs time-series splits for each                   

entity in the panel, and forces each training and validation set to contain information                           

about all entities. This allows us to more reliably explore our research question                         

regarding the value of interrelationships between different tickers characteristics. 

In the ticker-level regression framework, standard time-series splits are more                   

appropriate, but we explore two additional, bespoke implementations of the                   

out-of-the-box Scikit-learn function. In both cross-validation frameworks, we restrict the                   

size of the validation set to 21 observations, with a minimum training-set size of 252                             
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observations (one year of trading days). Our rationale for doing so evolves from the                           

structure of our target-since, at any given point in time, we are faced with predicting a                               

month's worth of data out-of-sample, we seek to replicate that prediction problem within                         

our cross-validation framework. We do not believe it is entirely realistic or informative                         

to use validation sets of 160+ observations (what we face using twelve-fold time-series                         

splits) since this reflects predictions that are up to 181 days out-of-sample. We implement                           

both a windowed approach (iteratively moving a training-set of 252 observations and                       

validation set of 21 observations through time) and recursive approach consistent with                       

the Scikit-learn implementation that gradually grows the training set. We do not apply                         

this framework at the panel-level because it is computationally infeasible, though the                       

code is written such that it ​can​ be used, given more computing resources. 

We acknowledge, moreover, that this represents something of an optimization problem                     

in and of itself, per the bias-variance trade-off. A cross-validation framework with too                         

many splits would be subject to a problem of high variance, while a framework with too                               

few is subject to high bias. While we select a train-test split size that accurately reflects                               

the prediction problem at hand, we recognize the potential this poses for overfitting. We                           

did not have a significant amount of time to explore this optimization problem, and leave                             

it to further research. 

MODELING 

Given the four cross-validation frameworks discussed above, along with the information                     

we established during our feature selection/first-pass modeling process, we explored a                     

number of workhorse classification modeling approaches. These include: logistic                 

regression, kNN (k-nearest neighbors), SVC (support vector classifier), RandomForest,                 

GBM (gradient boosting machines), and, finally, the LightGBM implementation of                   

gradient-boosting decision trees. We observed reliably higher performance using                 

ensemble modeling frameworks, and focused hyper-parameter tuning predominantly on                 

the LightGBM implementation due to the high-degree of tuning available and speed of                         

model fitting. Additionally, we remove 20 stocks from the initial 506 in our panel due to                               

insufficient sample size (less than 5 years of data) and to avoid duplicitous entries. 

MODEL SELECTION 

On the outset, we found that all models performed very poorly on the panel-level, panel                             

cross-validation sets. F1 and AUC scores for the logistic regression, kNN, RandomForest,                       
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GBM and LightGBM models were 0.51 and 0.47, 0.51 and 0.45, 0.52 and 0.51, 0.51 and                               

0.49, and 0.51 and 0.50, respectively. This would suggest that, at the panel-level using the                             

panel cross-validation sets, our models are, colloquially, no better than a coin flip and                           

are essentially assigning classes at random. Using the out-of-the-box time-series                   

cross-validation splits, the same models (save for kNN due to time/compute associated                       

with fitting) boasted F1 and AUC scores of 0.52 and 0.46, 0.51 and 0.51, 0.52 and 0.5, 0.54                                   

and 0.49. With such poor performance across the board, the only marginally                       

better-performing model that presents on the panel-level data set is the LightGBM.                       

Fortunately, the LightGBM implementation of gradient-boosted decision trees provides                 

for exceptionally fine hyper-parameter tuning, and fits models remarkably quickly, even                     

with a data set of approximately one million observations. Moreover, given the                       

computation constraints of fitting kNN models on our data, we will not consider them for                             

models fit on the ticker-level data, and will focus exclusively on the ensemble modeling                           

frameworks, with particular emphasis on the LightGBM. We did attempt to fit SVC                         

models, but found the runtime was prohibitive (6 hours for the first 3 folds of the panel                                 

data set). 

We rely on ROC/AUC, Precision-Recall curves, and standard classification report output                     

(particularly weighted-average F1-scores) for evaluation. Note that AUC and                 

Precision-Recall scores are calculated with respect to raw, predicted probabilities, while                     

the "predicted" classes necessary to generate classification report have been generated                     

using a dynamic, discrimination-threshold search which seeks to optimize the decision                     

threshold for F1-score. Given that a passive investment strategy would inherently                     

encourage as little adjustment as possible, we note positive-class precision scores as well,                         

which indicate the ability of the models to avoid false-positives. Given the nature of our                             

problem, we are less bothered by missing possible excess returns, and more concerned                         

with avoiding mistakenly shifting concentration into an asset that will underperform                     

based on our predictions. 
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MODEL EVALUATION 

We find that our best performing panel-level model is the LightGBM implementation of                         

gradient-boosted decision trees, with max-depth of three and 10,000 estimators. The                     

figure on the left above displays the modest amount of lift our LGBM model gets in the                                 

AUC score, calculated on 12 out-of-sample validation folds, and the figure on the right                           

above displays the very small improvement our model provides in terms of the                         

precision-recall trade-off. While these results are certainly nonstellar, they do represent                     

a marginal improvement on random chance, and do so reliably, out-of-sample.                     

Classification reports reveal this model yields a weighted-average F1-score of 0.53, and a                         

positive-class precision score of 0.54. 

Despite these results, it is of note that the panel-level cross-validation framework yielded,                         

for all intents and purposes, non-results, but the time-series cross-validation framework                     

did. This suggests that the models fit on ticker-agnostic cross-validation splits performed                       

better, so requiring every entity to be reflected in the fold did not improve performance.                             

This somewhat counter-intuitive finding may shed some light on the generally poor                       

performance overall-with so many individual assets evolving on their own, unique path                       

over time, there is likely far too much noise in the data set to reliably discern the                                 

performance of individual tickers relative to the index. 

This leads us naturally to the second framing of our research question - ticker-level                           

modeling. By modeling each ticker’s out-/under-performance we hope to discern more                     

signal than in the large, noisy panel. Using the same 12-fold time-series cross-validation                         

framework, we find similarly disappointing F1 and AUC scores for the Scikit-Learn                       

implementations of RandomForest and Gradient-Boosting Classifier at 0.51 and 0.52, and                     

0.52 and 0.54, respectively. However, we note a reliable improvement in the                       
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out-of-sample AUC ( and Precision-Recall scores for the LightGBM implementation, as                     

illustrated in the figures below, lending further credibility to the use of this model, and                             

our choice to model at the ticker-level. Moreover, these models yield weighted-average                       

F1-scores of 0.57 (with positive-class precision and F1-scores of 0.58 and 0.60,                       

respectively). 

 

As indicated in the cross-validation section above, we also explore a more bespoke                         

cross-validation framework that addresses the possible handicap that including very                   

stale data in our training set may present. Using largely the same structure as the                             

out-of-the-box TimeSeries splits, we implement a rolling window cross-validation                 

framework (as described above) with a 252-day training window and a 126-day (or                         

6-month) test window, which amounts to approximately 14 splits. In doing so, we find                           

modest ​improvements in our scores, which implies that data too far from the past is not                               

helping, and could in fact be hurting, our performance. 

 

 

By that logic, if data too far from the past is unhelpful for predicting the future, it might                                   
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be realistic to believe that data too far into the ​future may be an unrealistic target. As                                 

such, we use our cross-validation framework as an additional dimension for tuning our                         

models, in an effort to frame this in a way that more accurately represents the prediction                               

problem we face in the real-world. At any given point in time, we are behind our target,                                 

mechanically, by 21 days. As such, there is a natural 21 day holdout set upon which we                                 

hope to predict performance relative to the index (this is the information that should                           

inform rebalancing in an application of this model). In this vein, we considered a                           

cross-validation framework that 1) restricts the size of the validation set to 21 trading                           

days; and 2) restricts the size of the training set to the 252 prior trading days. This                                 

addresses two possible concerns that may be affecting the performance of the bulkier                         

models detailed above. First, we’d expect that the most salient information for predicting                         

returns in the near-term, would be the most recent information that transpired. Several                         

year-old data would likely be stale, and no longer accurately reflect the state of things at                               

the present time, and, as such, we would not expect it to be significantly informative for                               

future decisions regarding stock price. Second, predicting a validation set of                     

approximately 160 observations (as is the case with 12-fold time-series splits as of time of                             

writing) represents predictions of relative performance 181 days in the future.                     

Recognizing the inherently mercurial nature of even day-ahead returns, it is no wonder                         

our model has difficult predicting returns more than 6-months into the future. 

Using this cross-validation framework, along with the same, tuned LightGBM model, we                       

find reliably better results out-of-fold. The figures below demonstrate the marked                     

improvement in both AUC, which moves us well past the territory of random chance, and                             

into the realm of actually detecting some signal through the noise.  

 

We do, however, recognize that this invites the serious possibility of overfitting - while                           

this framing of the out-of-fold samples does more accurately represent the problem we                         

face, it also requires the model to be fit on over 80 different splits. Averaging over so                                 
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many splits does imply we may be overfitting our data purely as a result of random                               

chance in predicting a few of those folds very well. 

In order to arrive at a final model that reconciles this to some extent, we examined                               

validation set sizes of 21, 42, 63, 84, and (as displayed above) 126 observations, each                             

linking to real-world trading-day horizons of 1-, 2-, 3-, 4-, and 6-months, respectively. We                           

are willing to sacrifice some performance to address the concerns associated with                       

overfitting. Additionally, we also tuned our models further to address concerns of                       

overfitting the ​training data, specifically. As the LightGBM model grows trees leaf-wise,                       

rather than level-wise, it is far more accurate, but far more complex and therefore more                             

likely to overfit the data. Noticing in-sample AUC scores of 0.95 and higher, we tuned our                               

final model to handicap performance in-sample, in hopes of making the model more                         

generalizable with data out-of-fold. 

Using a final model with: 1) 10,000 estimators; 2) a learning rate of 0.1; 3) max depth of 2;                                     

and 4) maximum bins and leaves of 25 each, trained on a rolling window                           

cross-validation framework with 252 days of training data and 63 days of test data, we                             

find the following, reasonable results. We find an AUC score of 0.66, and area under the                               

Precision-Recall curve of 0.67. As the classification report heat map suggests,                     

weighted-average F1-scores have improved somewhat. We find weighted-average               

F1-scores of 0.62, along with 0.62 precision and 0.67 F1-score for the positive class.                           

Moreover, we note that there is significant disparity in model-performance both between                       

different entities (suggesting that some tickers are more predictable than others in the                         

context of our data set) and between validation folds (suggesting there are certain                         

months that are more predictable than others). These novelties are a natural starting                         

point for further research. 

 

 

23   



In addition, we applied a custom built discrimination threshold search function to                       

optimize the discrimination threshold for a grid of possible values between 0.25 and                         

0.75, and relative to a specified metric. We found this modestly improved our results, at                             

least at the ticker level, and report the classification report using that search above.  

APPLICATION 

Given the non-trivial performance of our ticker-level models, we identify a unique                       

opportunity to deliver a data product that allows users to select individual tickers within                           

our basket to examine overall predictability, the path of relative returns historically, and                         

predicted probabilities of performance in the 21-day holdout period that naturally exists                       

using our target. As such, with data that is ingested on a daily frequency, on any given                                 

day, one would be able to assess the predicted performance of tickers in their portfolio,                             

and adjust accordingly. 

As a part of our next-steps, we hope to render a proof-of-concept of this application in a                                 

Jupyter notebook using the Plotly and ipywidgets libraries, to provide user-interaction                     

for selection specific stocks to assess the trajectory of their performance historically, the                         

classes associated with the raw returns that we seek to predict, indicators of overall                           

predictability (based on evaluation criterion established above), and predicted                 

probabilities of out performance in the next month, relative to the day the application is                             

visited. Rather than store the results of every model in memory to index, we defer to a                                 

framework that models the ticker performance in real-time and provides immediate                     

results. In a more robust implementation, one would likely store ticker-level data in a                           

database to be accessed by the user directly, and in doing so could provide to users                               

rankings of stocks by both predictability and predicted outperformance in the coming                       

month.  

Naturally, we would hope to map the predicted probabilities of returns to their actual                           

returns in the real-world, and backtest to determine if knowing this leading information                         

is helpful for rebalancing a passive portfolio. 

ASSESSMENT 

The problem we sought out to address is, admittedly, an extremely difficult one.                         

Predicting stock price movements is regularly disregarded as a fool's errand, particularly                       

without untold amounts of domain expertise and resources. Still, the models we                       
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developed, particularly at the ticker-level, indicate \textit{some} predictive power                 

beyond random chance that could be exploited as a leading indicator for optimal                         

rebalancing of a passive portfolio. Gratuitous domain expertise and resources                   

notwithstanding, we address a few key limitations of our approach, and provide tangible                         

next-steps to improve upon the analysis herein. 

LIMITATIONS 

If the past few months are any indication, it is clear that the fluctuations in the stock                                 

market are driven just as much by emotion and sentiment as any underlying                         

fundamental financial principles or models. Despite this, given that so much of today's                         

market participants are underscoring their decisions with rigorous quantitative                 

methodology/AI, we sought to divine, to the extent possible, some signal through the                         

noise and arm investors with an additional leading indicator for stock performance in a                           

monthly window. We believe our models ​have latched onto some signal, but cannot                         

possibly capture the emotions/irrational exuberance narrative. 

So much of what has driven movements in stock prices within the past six months has                               

been emotion, fundamental shifts in foreign policy and developments in other advanced                       

economies (i.e. Brexit, trade war, etc.), Federal Reserve communications, and anything                     

that comes out of the president's twitter. Incorporating broad-based measures of                     

geopolitical, fiscal, and monetary developments would likely improve our models, but                     

would significantly expand the scope of our research question, and move this exercise                         

more within the realm of a Natural-Language Processing (NLP) exercise to gauge                       

sentiment in the economy broadly. Building a model purely based on characteristics of                         

the underlying financial data, abstracts away from these drivers that are far more                         

difficult to capture, and therefore handicaps the ability of our models to accurately                         

predict some of these fluctuations. 

Beyond the limitations of our data set, we did not explore the advances in machine- and                               

deep-learning that have led to more powerful models purpose-built for time-series                     

prediction. Recurrent neural networks (RNNs), particularly long short-term memory                 

models, have manifested as the gold-standard for time-series prediction in the field                       

today. In order to keep our pipeline consistent with the Scikit-learn API, and to leverage                             

the skills we developed through the certificate program, we chose not to leverage these                           

kinds of models, but could reasonably expect model performance to improve using these                         

more advanced approaches. 
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NEXT STEPS 

The limitations described above lead naturally to some tangible next steps to explore                         

with our analysis, which we attend to here in addition to some less abstract possibilities                             

related to our product. Incorporating sentiment surrounding the market itself, and                     

capturing the more intangible geopolitical, monetary, and fiscal considerations that                   

inevitably drive movements in stock prices, would likely go a long way toward                         

improving the results of the model. The largest shifts in the market in the past few                               

months have largely been developments related to trade tensions between the U.S. and                         

China, along with signalling from the Federal Reserve Board of Governors regarding the                         

stance of monetary policy. The trade considerations, in particular, would be extremely                       

difficult to capture with employing sentiment analysis and natural-language processing,                   

though including them simply as an "event" dummy-variable could make a                     

difference-doing so would take a considerable amount of time as an individual would                         

likely have to hand-pick what "events" are significant enough to reflect in a feature. 

Incorporating more robust, purpose-built models for time-series analysis would not go                     

amiss, either. We abstracted away from these types of models (to the extent possible),                           

largely since they were a departure from the curriculum of the program. Given more                           

time, we would hope to put our data to the test using an LSTM model, or using more                                   

advanced time-series regression techniques such as symbolic regression. Even with our                     

current suite of models, we were somewhat limited in our ability to tune                         

hyper-parameters given how computationally intensive some of our models were -                     

panel-level data sets were particularly difficult to tune since models could take hours to                           

run, and doing a great deal of tuning at the ticker-level felt like it would lead to                                 

overfitting on single tickers. In most cases, defaults, or collections of hyper-parameters                       

that reduced overfitting performed best. However, given more time and, possibly, a GPU,                         

we would spend more time tuning our models 

We did not have time to develop a working demo of a product/application, and can                             

envision some ways to do so. The next step would be to have this pipeline running                               

automatically, each day, to populated data in an app that a user could access to get                               

information about best- and worst-performing stocks per our prediction framework.                   

Additionally, using the more involved windowed cross-validation approach offers an                   

opportunity to compare the characteristics of different time periods with those moving                       

forward. Since the models perform quite well in some folds, and poorly in others, an                             

additional layer of complexity that weights the quality of predictions by the similarity of                           
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a given time-period to the present could prevent rebalancing in error. 

Lastly, we did not have enough time to robustly map our predictions to actual returns,                             

and compare these returns relative to the market in absolute terms. Given more time, we                             

would do so, and could enter into an additional optimization problem wherein                       

machine-learning is used to determine how much concentration in stocks predicted to                       

underperform should be moved into those predicted to outperform. 

CONCLUSION 

Despite the significant difficulty our research questions presented, we are pleased to                       

have divined some signal in the overwhelming noisiness of stock returns. Revisiting our                         

high-level hypothesis, (derived features from financial and market data will be                     

predictive of relative returns for individual stocks in a panel-level data set of S&P 500                             

stocks), we have found that the panel-level approach was not particularly helpful for                         

predicting returns and, in fact, entity-agnostic, pure time-series cross-validation                 

frameworks yielded better out-of-sample performance in the panel. 

We were happy to find that the significant time invested in feature-engineering, and                         

informing the cultivation of a set of features with the existing literature, was worthwhile                           

as engineered features topped our feature importance charts. Additionally, the careful                     

thought put into developing cross-validation frameworks that more accurately reflected                   

the prediction problem as it presented outside of this simulation bore the most reliable,                           

interesting results. The clearest next steps for the project are further development of an                           

application (outside the scope of a Jupyter notebook) that would be consumer-facing to                         

provide real-time indications of signals of predicted under- and over-performance, and                     

mapping of these signals to real returns, and providing automated rebalancing of a                         

passive portfolio. 
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